7 resultados para Polycaprolactone (PCL)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Pollution of water bodies is one of the most common environmental problems today. Organic pollutants are one of the main drawbacks in this natural resource, among which the following stand out long-lived dyes, pharmaceuticals, and pesticides. This research aims at obtaining nanocomposites based on polycaprolactone-chitosan (PCL-CS) electrospun nanofibers (NFs) containing TiO2 nanoparticles (NPs) for the adsorption and photocatalytic degradation of organic pollutants, using Rhodamine B as a model. The fabricated hybrid materials were characterized by FT-IR, TGA, DSC, SEM, TEM, tensile properties, and the contact angle of water drops. The photoactivity of the NFs was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of rhodamine B (RhB). For this purpose, TiO2NPs were successfully ex-situ incorporated into the polymer matrix promoting good mechanical properties and higher hydrophilicity of the material. The results showed that CS in the NFs increased the absorption and degradation of RhB by the TiO2NPs. CS attracted the pollutant molecules to the active sites vicinity of TiO2NPs, favoring initial adsorption and degradation. In other words, a bait-hook-and-destroy effect was evidenced. It also was demonstrated that the sensitization of TiO2 by organic dyes (e.g., perylene derivative) considerably improves the photocatalytic activity under visible radiation, allowing the use of low amounts of TiO2. (≈0.05 g/1 g of fiber). Hence, the current study is expected to contribute with an environmentally friendly green alternative solution.
Resumo:
This research investigated someone of the main problems connected to the application of Tissue Engineering in the prosthetic field, in particular about the characterization of the scaffolding materials and biomimetic strategies adopted in order to promote the implant integration. The spectroscopic and thermal analysis techniques were usefully applied to characterize the chemico-physical properties of the materials such as – crystallinity; – relative composition in case of composite materials; – Structure and conformation of polymeric and peptidic chains; – mechanism and degradation rate; – Intramolecular and intermolecular interactions (hydrogen bonds, aliphatic interactions). This kind of information are of great importance in the comprehension of the interactions that scaffold undergoes when it is in contact with biological tissues; this information are fundamental to predict biodegradation mechanisms and to understand how chemico-physical properties change during the degradation process. In order to fully characterize biomaterials, this findings must be integrated by information relative to mechanical aspects and in vitro and in vivo behavior thanks to collaborations with biomedical engineers and biologists. This study was focussed on three different systems that correspond to three different strategies adopted in Tissue Engineering: biomimetic replica of fibrous 3-D structure of extracellular matrix (PCL-PLLA), incorporation of an apatitic phase similar to bone inorganic phase to promote biomineralization (PCL-HA), surface modification with synthetic oligopeptides that elicit the interaction with osteoblasts. The characterization of the PCL-PLLA composite underlined that the degradation started along PLLA fibres, which are more hydrophylic, and they serve as a guide for tissue regeneration. Moreover it was found that some cellular lines are more active in the colonization of the scaffold. In the PCL-HA composite, the weight ratio between the polymeric and the inorganic phase plays an essential role both in the degradation process and in the biomineralization of the material. The study of self-assembling peptides allowed to clarify the influence of primary structure on intermolecular and intermolecular interactions, that lead to the formation of the secondary structure and it was possible to find a new class of oligopeptides useful to functionalize materials surface. Among the analytical techniques used in this study, Raman vibrational spectroscopy played a major role, being non-destructive and non-invasive, two properties that make it suitable to degradation studies and to morphological characterization. Also micro-IR spectroscopy was useful in the comprehension of peptide structure on oxidized titanium: up to date this study was one of the first to employ this relatively new technique in the biomedical field.
Resumo:
Reconstruction of bone is needed for high bone loss due to congenital deformities, trauma or neoplastic diseases. Commonly, orthopaedic surgical treatments are autologus or allogenic bone implant or prosthetic implant. A choice to the traditional approaches could be represented by tissue engineering that use cells (and/or their products) and innovative biomaterials to perform bone substitutes biologically active as an alternative to artificial devices. In the last years, there was a wide improvement in biology on stem cells potential research and in biomedical engineering through development of new biomaterials designed to resemble the physiological tissues. Tissue engineering strategies and smart materials aim together to stimulate in vivo bone regeneration. This approaches drive at restore not only structure integrity and/or function of the original tissue, but also to induce new tissue deposition in situ. An intelligent bone substitute is now designed like not only a scaffold but also as carrier of regeneration biomolecular signals. Biomimetics has helped to project new tissue engineered devices to simulate the physiological substrates architecture, such extracellular matrix (ECM), and molecular signals that drive the integration at the interface between pre-existing tissue and scaffold. Biomimetic strategies want to increase the material surface biological activity with physical modifications (topography) o chemical ones (adhesive peptides), to improve cell adhesion to material surface and possibly scaffold colonization. This study evaluated the effects of biomimetic modifications of surgical materials surface, as poly-caprolattone (PCL) and titanium on bone stem cells behaviour in a marrow experimental model in vitro. Two biomimetic strategies were analyzed; ione beam irradiation, that changes the surface roughness at the nanoscale, and surface functionalization with specific adhesive peptides or Self Assembled Monolayers (SAMs). These new concept could be a mean to improve the early (cell adhesion, spreading..) and late phases (osteoblast differentiation) of cell/substrate interactions.
Resumo:
The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.
Resumo:
A major weakness of composite materials is that low-velocity impact, introduced accidentally during manufacture, operation or maintenance of the aircraft, may result in delaminations between the plies. Therefore, the first part of this study is focused on mechanics of curved laminates under impact. For this aim, the effect of preloading on impact response of curved composite laminates is considered. By applying the preload, the stress through the thickness and curvature of the laminates increased. The results showed that all impact parameters are varied significantly. For understanding the contribution rate of preloading and pre-stress on the obtained results another test is designed. The interesting phenomenon is that the preloading can decrease the damaged area when the curvature of the both specimens is the same. Finally the effect of curvature type, concave and convex, is investigated under impact loading. In the second part, a new composition of nanofibrous mats are developed to improve the efficiency of curved laminates under impact loading. Therefore, at first some fracture tests are conducted to consider the effect of Nylon 6,6, PCL, and their mixture on mode I and mode II fracture toughness. For this goal, nanofibers are electrospun and interleaved between mid-plane of laminate composite to conduct mode I and mode II tests. The results shows that efficiency of Nylon 6,6 is better than PCL in mode II, while the effect of PCL on fracture toughness of mode I is more. By mixing these nanofibers the shortage of the individual nanofibers is compensated and so the Nylon 6,6/PCL nanofibers could increased mode I and II fracture toughness. Then all these nanofibers are used between all layers of composite layers to investigate their effect on damaged area. The results showed that PCL could decrease the damaged area about 25% and Nylon 6,6 and mixed nanofibers about 50%.
Resumo:
The role of non-neuronal brain cells, called astrocytes, is emerging as crucial in brain function and dysfunction, encompassing the neurocentric concept that was envisioning glia as passive components. Ion and water channels and calcium signalling, expressed in functional micro and nano domains, underpin astrocytes’ homeostatic function, synaptic transmission, neurovascular coupling acting either locally and globally. In this respect, a major issue arises on the mechanism through which astrocytes can control processes across scales. Finally, astrocytes can sense and react to extracellular stimuli such as chemical, physical, mechanical, electrical, photonic ones at the nanoscale. Given their emerging importance and their sensing properties, my PhD research program had the general goal to validate nanomaterials, interfaces and devices approaches that were developed ad-hoc to study astrocytes. The results achieved are reported in the form of collection of papers. Specifically, we demonstrated that i) electrospun nanofibers made of polycaprolactone and polyaniline conductive composites can shape primary astrocytes’ morphology, without affecting their function ii) gold coated silicon nanowires devices enable extracellular recording of unprecedented slow wave in primary differentiated astrocytes iii) colloidal hydrotalcites films allow to get insight in cell volume regulation process in differentiated astrocytes and to describe novel cytoskeletal actin dynamics iv) gold nanoclusters represent nanoprobe to trigger astrocytes structure and function v) nanopillars of photoexcitable organic polymer are potential tool to achieve nanoscale photostimulation of astrocytes. The results were achieved by a multidisciplinary team working with national and international collaborators that are listed and acknowledged in the text. Collectively, the results showed that astrocytes represent a novel opportunity and target for Nanoscience, and that Nanoglial interface might help to unveil clues on brain function or represent novel therapeutic approach to treat brain dysfunctions.
Resumo:
Carbon Fiber Reinforced Polymers (CFRPs) are well renowned for their excellent mechanical properties, superior strength-to-weight characteristics, low thermal expansion coefficient, and fatigue resistance over any conventional polymer or metal. Due to the high stiffness of carbon fibers and thermosetting matrix, CFRP laminates may display some drawbacks, limiting their use in specific applications. Indeed, the overall laminate stiffness may lead to structural problems arising from their laminar structure, which makes them susceptible to structural failure by delamination. Moreover, such stiffness given by the constituents makes them poor at damping vibration, making the component more sensitive to noise and leading, at times, to delamination triggering. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε- caprolactone) (PCL) and polyamides (Nylons), as nonwovens are common and well established. Here, in this PhD thesis, a new method for the production of rubber-rich nanofibrous mats is presented. The use of rubbery nanofibers blended with PCL, widely reported in the literature, was used as matrix tougheners, processing DCB test results by evaluating Acoustic Emissions (AE). Moreover, water-soluble electrospun polyethylene oxide (PEO) nanofibers were proposed as an innovative method for reinforcing layers and hindering delamination in epoxy-based CFRP laminates. A nano-modified CFRP was then aged in water for 1 month and its delamination behaviour compared with the ones of the commercial laminate. A comprehensive study on the use of nanofibers with high rubber content, blended with a crystalline counterpart, as enhancers of the interlaminar properties were then investigated. Finally, PEO, PCL, and Nylon 66 nanofibers, plain or reinforced with Graphene (G), were integrated into epoxy-matrix CFRP to evaluate the effect of polymers and polymers + G on the laminate mechanical properties.