10 resultados para Plastic hinge calibration

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Adaptive Optic (AO) system is a fundamental requirement of 8m-class telescopes. We know that in order to obtain the maximum possible resolution allowed by these telescopes we need to correct the atmospheric turbulence. Thanks to adaptive optic systems we are able to use all the effective potential of these instruments, drawing all the information from the universe sources as best as possible. In an AO system there are two main components: the wavefront sensor (WFS) that is able to measure the aberrations on the incoming wavefront in the telescope, and the deformable mirror (DM) that is able to assume a shape opposite to the one measured by the sensor. The two subsystem are connected by the reconstructor (REC). In order to do this, the REC requires a “common language" between these two main AO components. It means that it needs a mapping between the sensor-space and the mirror-space, called an interaction matrix (IM). Therefore, in order to operate correctly, an AO system has a main requirement: the measure of an IM in order to obtain a calibration of the whole AO system. The IM measurement is a 'mile stone' for an AO system and must be done regardless of the telescope size or class. Usually, this calibration step is done adding to the telescope system an auxiliary artificial source of light (i.e a fiber) that illuminates both the deformable mirror and the sensor, permitting the calibration of the AO system. For large telescope (more than 8m, like Extremely Large Telescopes, ELTs) the fiber based IM measurement requires challenging optical setups that in some cases are also impractical to build. In these cases, new techniques to measure the IM are needed. In this PhD work we want to check the possibility of a different method of calibration that can be applied directly on sky, at the telescope, without any auxiliary source. Such a technique can be used to calibrate AO system on a telescope of any size. We want to test the new calibration technique, called “sinusoidal modulation technique”, on the Large Binocular Telescope (LBT) AO system, which is already a complete AO system with the two main components: a secondary deformable mirror with by 672 actuators, and a pyramid wavefront sensor. My first phase of PhD work was helping to implement the WFS board (containing the pyramid sensor and all the auxiliary optical components) working both optical alignments and tests of some optical components. Thanks to the “solar tower” facility of the Astrophysical Observatory of Arcetri (Firenze), we have been able to reproduce an environment very similar to the telescope one, testing the main LBT AO components: the pyramid sensor and the secondary deformable mirror. Thanks to this the second phase of my PhD thesis: the measure of IM applying the sinusoidal modulation technique. At first we have measured the IM using a fiber auxiliary source to calibrate the system, without any kind of disturbance injected. After that, we have tried to use this calibration technique in order to measure the IM directly “on sky”, so adding an atmospheric disturbance to the AO system. The results obtained in this PhD work measuring the IM directly in the Arcetri solar tower system are crucial for the future development: the possibility of the acquisition of IM directly on sky means that we are able to calibrate an AO system also for extremely large telescope class where classic IM measurements technique are problematic and, sometimes, impossible. Finally we have not to forget the reason why we need this: the main aim is to observe the universe. Thanks to these new big class of telescopes and only using their full capabilities, we will be able to increase our knowledge of the universe objects observed, because we will be able to resolve more detailed characteristics, discovering, analyzing and understanding the behavior of the universe components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has focused on the study of the behavior and of the collapse of masonry arch bridges. The latest decades have seen an increasing interest in this structural type, that is still present and in use, despite the passage of time and the variation of the transport means. Several strategies have been developed during the time to simulate the response of this type of structures, although even today there is no generally accepted standard one for assessment of masonry arch bridges. The aim of this thesis is to compare the principal analytical and numerical methods existing in literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite Element Method is a numerical method, that uses different strategies of discretization to analyze the structure. Every method is applied to the case study through computer-based representations, that allow a friendly-use application of the principles explained. A particular closed-form approach based on an elasto-plastic material model and developed by some Belgian researchers is also studied. To compare the three methods, two different case study have been analyzed: i) a generic masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built on Savio River in Cesena. In the analyses performed, all the models are two-dimensional in order to have results comparable between the different methods taken in exam. The different methods have been compared with each other in terms of collapse load and of hinge positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis describes the implementation of a calibration, format-translation and data conditioning software for radiometric tracking data of deep-space spacecraft. All of the available propagation-media noise rejection techniques available as features in the code are covered in their mathematical formulations, performance and software implementations. Some techniques are retrieved from literature and current state of the art, while other algorithms have been conceived ex novo. All of the three typical deep-space refractive environments (solar plasma, ionosphere, troposphere) are dealt with by employing specific subroutines. Specific attention has been reserved to the GNSS-based tropospheric path delay calibration subroutine, since it is the most bulky module of the software suite, in terms of both the sheer number of lines of code, and development time. The software is currently in its final stage of development and once completed will serve as a pre-processing stage for orbit determination codes. Calibration of transmission-media noise sources in radiometric observables proved to be an essential operation to be performed of radiometric data in order to meet the more and more demanding error budget requirements of modern deep-space missions. A completely autonomous and all-around propagation-media calibration software is a novelty in orbit determination, although standalone codes are currently employed by ESA and NASA. The described S/W is planned to be compatible with the current standards for tropospheric noise calibration used by both these agencies like the AMC, TSAC and ESA IFMS weather data, and it natively works with the Tracking Data Message file format (TDM) adopted by CCSDS as standard aimed to promote and simplify inter-agency collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of the research activity presented in this PhD thesis was the development of an innovative hardware and software solution for creating a unique tool for kinematics and electromyographic analysis of the human body in an ecological setting. For this purpose, innovative algorithms have been proposed regarding different aspects of inertial and magnetic data elaboration: magnetometer calibration and magnetic field mapping (Chapter 2), data calibration (Chapter 3) and sensor-fusion algorithm. Topics that may conflict with the confidentiality agreement between University of Bologna and NCS Lab will not be covered in this thesis. After developing and testing the wireless platform, research activities were focused on its clinical validation. The first clinical study aimed to evaluate the intra and interobserver reproducibility in order to evaluate three-dimensional humero-scapulo-thoracic kinematics in an outpatient setting (Chapter 4). A second study aimed to evaluate the effect of Latissimus Dorsi Tendon Transfer on shoulder kinematics and Latissimus Dorsi activation in humerus intra - extra rotations (Chapter 5). Results from both clinical studies have demonstrated the ability of the developed platform to enter into daily clinical practice, providing useful information for patients' rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha oscillations are linked to visual awareness and to the periodical sampling of visual information, suggesting that alpha rhythm reflect an index of the functionality of the posterior cortices, and hence of the visual system. Therefore, the present work described a series of studies investigating alpha oscillations as a biomarker of the functionality and the plastic modifications of the visual system in response to lesions to the visual cortices or to external stimulations. The studies presented in chapter 5 and 6 showed that posterior lesions alter alpha oscillations in hemianopic patients, with reduced alpha reactivity at the eyes opening and decreased alpha functional connectivity, especially in right-lesioned hemianopics, with concurrent dysfunctions in the theta range, suggesting a specialization of the right hemisphere in orchestrating alpha oscillations and coordinating complex interplays among different brain rhythms. The study presented in chapter 7 investigated a mechanism of rhythmical attentional sampling of visual information in healthy participants, showing that perceptual performance is influenced by a rhythmical mechanism of attentional allocation, occurring at lower-alpha frequencies (i.e., 7 Hz), when a single spatial location is monitored, and at lower frequencies (i.e., 5 Hz), when attention is allocated to two spatial locations. Moreover, the right hemisphere seemed to have a dominance in this rhythmical attentional sampling, distributing attentional resources to the entire visual field. Finally, the study presented in chapter 8 showed that prolonged visual entrainment induce long-term modulations of resting-state alpha activity in healthy participants, suggesting that persistent modifications in the functionality of the visual system are possible. Altogheter, these findings show that functional processes and plastic changes of the visual system are reflected in alpha oscillatory patterns. Therefore, investigating and promoting alpha oscillations may contribute to the development of rehabilitative protocols to ameliorate the functionality of the visual system, in brain lesioned patients.