4 resultados para Physical Space
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Smart Environments are currently considered a key factor to connect the physical world with the information world. A Smart Environment can be defined as the combination of a physical environment, an infrastructure for data management (called Smart Space), a collection of embedded systems gathering heterogeneous data from the environment and a connectivity solution to convey these data to the Smart Space. With this vision, any application which takes advantages from the environment could be devised, without the need to directly access to it, since all information are stored in the Smart Space in a interoperable format. Moreover, according to this vision, for each entity populating the physical environment, i.e. users, objects, devices, environments, the following questions can be arise: “Who?”, i.e. which are the entities that should be identified? “Where?” i.e. where are such entities located in physical space? and “What?” i.e. which attributes and properties of the entities should be stored in the Smart Space in machine understandable format, in the sense that its meaning has to be explicitly defined and all the data should be linked together in order to be automatically retrieved by interoperable applications. Starting from this the location detection is a necessary step in the creation of Smart Environments. If the addressed entity is a user and the environment a generic environment, a meaningful way to assign the position, is through a Pedestrian Tracking System. In this work two solution for these type of system are proposed and compared. One of the two solution has been studied and developed in all its aspects during the doctoral period. The work also investigates the problem to create and manage the Smart Environment. The proposed solution is to create, by means of natural interactions, links between objects and between objects and their environment, through the use of specific devices, i.e. Smart Objects
Resumo:
The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.
Resumo:
Many industries and academic institutions share the vision that an appropriate use of information originated from the environment may add value to services in multiple domains and may help humans in dealing with the growing information overload which often seems to jeopardize our life. It is also clear that information sharing and mutual understanding between software agents may impact complex processes where many actors (humans and machines) are involved, leading to relevant socioeconomic benefits. Starting from these two input, architectural and technological solutions to enable “environment-related cooperative digital services” are here explored. The proposed analysis starts from the consideration that our environment is physical space and here diversity is a major value. On the other side diversity is detrimental to common technological solutions, and it is an obstacle to mutual understanding. An appropriate environment abstraction and a shared information model are needed to provide the required levels of interoperability in our heterogeneous habitat. This thesis reviews several approaches to support environment related applications and intends to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may become a flexible and powerful solution to support interoperable services in virtually any domain and even in cross-domain scenarios. It also shows that semantic technologies can be fruitfully applied not only to represent application domain knowledge. For example semantic modeling of Human-Computer Interaction may support interaction interoperability and transformation of interaction primitives into actions, and the thesis shows how smart-space-based platforms driven by an interaction ontology may enable natural ad flexible ways of accessing resources and services, e.g, with gestures. An ontology for computational flow execution has also been built to represent abstract computation, with the goal of exploring new ways of scheduling computation flows with smart-space-based semantic platforms.
Resumo:
A successful interaction with objects in the environment requires integrating information concerning object-location with the shape, dimension and position of body parts in space. The former information is coded in a multisensory representation of the space around the body, i.e. peripersonal space (PPS), whereas the latter is enabled by an online, constantly updated, action-orientated multisensory representation of the body (BR) that is critical for action. One of the critical features of these representations is that both PPS and BR are not fixed, but they dynamically change depending on different types of experience. In a series of experiment, I studied plastic properties of PPS and BR in humans. I have developed a series of methods to measure the boundaries of PPS representation (Chapter 4), to study its neural correlates (Chapter 3) and to assess BRs. These tasks have been used to study changes in PPS and BR following tool-use (Chapter 5), multisensory stimulation (Chapter 6), amputation and prosthesis implantation (Chapter 7) or social interaction (Chapter 8). I found that changes in the function (tool-use) and the structure (amputation and prosthesis implantation) of the physical body elongate or shrink both PPS and BR. Social context and social interaction also shape PPS representation. Such high degree of plasticity suggests that our sense of body in space is not given at once, but it is constantly constructed and adapted through experience.