40 resultados para PER method

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed 82 healthy subjects, from both sexes, aged between 19 and 77 years. All subjects performed two different tests: for being scientifically acknowledged, the first one was used as a reference and it was a stress test (CPX). During the entire test, heart rate and gas exchange were recorded continuously; the second, the actual object of this study, was a submaximal test (TOP). Only heart rate was recorded continuously. The main purpose was to determinate an index of physical fitness as result of TOP. CPX test allowed us to individuate anaerobic threshold. We used an incremental protocol of 10/20 Watt/min, different by age. For our TOP test we used an RHC400 UPRIGHT BIKE, by Air Machine. Each subject was monitored for heart frequency. After 2 minutes of resting period there was a first step: 3 minutes of pedalling at a constant rate of 60 RPM, (40 watts for elder subjects and 60 watts for the younger ones). Then, the subject was allowed to rest for a recovery phase of 5 minutes. Third and last step consisted of 3 minutes of pedalling again at 60 RPM but now set to 60 watts for elder subjects and 80 watts for the young subjects. Finally another five minutes of recovery. A good correlation was found between TOP and CPX results especially between punctua l heart rate reserve (HRR’) and anaerobic threshold parameters such as Watt, VO2, VCO2 . HRR’ was obtained by subtracting maximal heart rate during TOP from maximal theoretic heart rate (206,9-(0,67*age)). Data were analyzed through cluster analysis in order to obtain 3 homogeneous groups. The first group contains the least fit subjects (inactive, women, elderly). The other groups contain the “average fit” and the fittest subjects (active, men, younger). Concordance between test resulted in 83,23%. Afterwards, a linear combinations of the most relevant variables gave us a formula to classify people in the correct group. The most relevant result is that this submaximal test is able to discriminate subjects with different physical condition and to provide information (index) about physical fitness through HRR’. Compared to a traditional incremental stress test, the very low load of TOP, short duration and extended resting period, make this new method suitable to very different people. To better define the TOP index, it is necessary to enlarge our subject sample especially by diversifying the age range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV) are members of Benyvirus genus. BSBMV has been reported only in the United States while BNYVV has a worldwide distribution. Both viruses are vectored by Polymyxa betae, possess similar host ranges, particles number and morphology. Both viruses are not serologically related but have similar genomic organizations. Field isolates consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs 1 and 2 are essential for infection and replication while RNAs 3 and 4 play important roles on plant and vector interactions, respectively. Nucleotide and amino acid analyses revealed BSBMV and BNYVV are different enough to be classified in two different species. Additionally in BNYVV/BSBMV mixed infections, a competition was previous described in sugar beet, where BNYVV infection reduces BSBMV accumulation in both susceptible and resistant cultivars. Considering all this observations we hypothesized that BNYVV and BSBMV crossed study, exploiting their similarities and divergences, can improve investigation of molecular interactions between sugar beets and Benyviruses. The main achievement of our research is the production of a cDNA biologically active clones collection of BNYVV and BSBMV RNAs, from which synthetic copies of both Benyviruses can be transcribed. Moreover, through recombination experiments we demonstrated, for the first time, the BNYVV RNA 1 and 2 capability to trans-replicate and encapsidate BSBMV RNA 3 and 4, either the BSBMV RNA 1 and 2 capability to replicate BNYVV RNA2 in planta. We also demonstrated that BSBMV RNA3 support long-distance movement of BNYVV RNA 1 and 2 in B. macrocarpa and that 85 foreign sequence as p29HA, GFP and RFP, are successfully expressed, in C. quinoa, by BSBMV RNA3 based replicon (RepIII) also produced by our research. These results confirm the close correlation among the two viruses. Interestingly, the symptoms induced by BSBMV RNA-3 on C. quinoa leaves are more similar to necrotic local lesions caused by BNYVV RNA-5 p26 than to strongly chlorotic local lesions or yellow spot induced by BNYVV RNA- 3 encoded p25. As previous reported BSBMV p29 share 23% of amino acid sequence identity with BNYVV p25 but identity increase to 43% when compared with sequence of BNYVV RNA-5 p26. Based on our results the essential sequence (Core region) for the longdistance movement of BSBMV and BNYVV in B. macrocarpa, is not only carried by RNA3s species but other regions, perhaps located on the RNA 1 and 2, could play a fundamental role in this matter. Finally a chimeric RNA, composed by the 5’ region of RNA4 and 3’ region of RNA3 of BSBMV, has been produced after 21 serial mechanically inoculation of wild type BSBMV on C. quinoa plants. Chimera seems unable to express any protein, but it is replicated and transcript in planta. It could represent an important tool to study the interactions between Benyvirus and plant host. In conclusion different tools, comprising a method to study synthetic viruses under natural conditions of inoculum through P. Betae, have been produced and new knowledge are been acquired that will allow to perform future investigation of the molecular interactions between sugar beets and Benyviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new multi-energy CT for small animals is being developed at the Physics Department of the University of Bologna, Italy. The system makes use of a set of quasi-monochromatic X-ray beams, with energy tunable in a range from 26 KeV to 72 KeV. These beams are produced by Bragg diffraction on a Highly Oriented Pyrolytic Graphite crystal. With quasi-monochromatic sources it is possible to perform multi-energy investigation in a more effective way, as compared with conventional X-ray tubes. Multi-energy techniques allow extracting physical information from the materials, such as effective atomic number, mass-thickness, density, that can be used to distinguish and quantitatively characterize the irradiated tissues. The aim of the system is the investigation and the development of new pre-clinic methods for the early detection of the tumors in small animals. An innovative technique, the Triple-Energy Radiography with Contrast Medium (TER), has been successfully implemented on our system. TER consist in combining a set of three quasi-monochromatic images of an object, in order to obtain a corresponding set of three single-tissue images, which are the mass-thickness map of three reference materials. TER can be applied to the quantitative mass-thickness-map reconstruction of a contrast medium, because it is able to remove completely the signal due to other tissues (i.e. the structural background noise). The technique is very sensitive to the contrast medium and is insensitive to the superposition of different materials. The method is a good candidate to the early detection of the tumor angiogenesis in mice. In this work we describe the tomographic system, with a particular focus on the quasi-monochromatic source. Moreover the TER method is presented with some preliminary results about small animal imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wall film model has been implemented in a customized version of KIVA code developed at University of Bologna. Under the hypothesis of `thin laminar ow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film. The governing equations have been integrated in space by using a finite volume approach with a first order upwind differencing scheme and they have been integrated in time with a fully explicit method. The model is validated using two different test cases reproducing PFI gasoline and DI Diesel engine wall film conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human biomonitoring (HBM) is an ideal tool for evaluating toxicant exposure in health risk assessment. Chemical substances or their metabolites related to environmental pollutants can be detected as biomarkers of exposure using a wide variety of biological fluids. Individual exposure to aromatic hydrocarbon compounds (benzene, toluene, and o-xylene –“BTX”) were analysed with a liquid chromatography coupled to electrospray ionisation-mass spectrometry (μHPLC-ESI-MS/MS) method for the simultaneous quantitative detection of the BTX exposure biomarker SPMA, SBMA and o-MBMA in human urine. Urinary S-phenylmercapturic acid (SPMA) is a biomarker proposed by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene (Biological Exposure Index of 25 microg/g creatinine). Urinary S-benzylmercapturic (SBMA) and o-methyl S-benzyl mercapturic acid (o-MBMA) are specific toluene and o-xylene metabolites of glutathione detoxicant pathways, proposed as reliable biomarkers of exposure. To this aim a pre-treatment of the urine with solid phase extraction (SPE) and an evaporation step were necessary to concentrate the mercapturic acids before instrumental analysis. A liquid chromatography separation was carried out with a reversed phase capillary column (Synergi 4u Max-RP) using a binary gradient composed of an acquous solution of formic acid 0.07% v/v and methanol. The mercapturic acids were determinated by negative-ion-mass spectrometry and the data were corrected using isotope-labelled analogs as internal standards. The analytical method follows U.S. Food and Drug Administration guidance and was applied to assess exposure to BTX in a group of 396 traffic wardens. The association between biomarker results and individual factors, such as age, sex and tobacco smoke were also investigated. The present work also included improvements in the methods used by modifying various chromatographic parameters and experimental procedures. A partial validation was conducted to evaluate LOD, precision, accuracy, recovery as well as matrix effects. Higher sensitivity will be possible in future biological monitoring programmes, allowing evaluation of very low level of BTX human exposure. Keywords: Human biomonitoring, aromatic hydrocarbons, biomarker of exposure, HPLC-MS/MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The species of the genus Coenosia Meigen are polyphagous predators both in the larval and in the adult stage. In Europe five Coenosia species of the ‘tigrina group’ are naturally present in greenhouses, where they can establish for long periods. As their wide preys range includes important pests of protected crops, as Aleyrodidae, Sciaridae and Agromyzidae, Coenosia species are considered promising potential biological control agents. A method for rearing Coenosia species in vivo was developed for the first time in 1993 in Germany, where C. attenuata, C. strigipes and C. humilis were bred on Bradysia paupera (Diptera Sciaridae), reared on Fusarium spp. cultivated on wood fibre. Although this method was partially simplified afterwards, it is still too complex and expensive for a mass production. This research aimed at simplifying this rearing procedure and making it cheaper, in the perspective of an eventual mass production. Studies on potential preys were conducted, to determine their suitability for C. attenuata larvae and adults and to develop rearing methods. Biology and rearing methods of Bradysia paupera Tuomikoski, Scatella stagnalis Fallén and Drosophila melanogaster Meigen (Diptera: Sciaridae, Ephydridae, Drosophilidae) were compared. B. paupera resulted the most suitable prey for rearing C. attenuata in vivo. The Sciarid fly was effectively reared on damp coconut fibre with fresh Agaricus bisporus (J.E. Lange) Pilát, thus simplifying the existing method. After preliminary trials with different potential preys, attempts to rear C. attenuata in vivo on B. paupera and D. melanogaster were made. The best results were obtained with B. paupera, reared on coconut fibre and A. bisporus, but the method needs further improvement. Trials of in vitro rearing of C. attenuata were also made: as no specific diet for Coenosia species is reported in literature, different potentially suitable media were tested. Among these, a specific diet for Diptera Tachinidae resulted a good starting point for further studies and improvements. The biology of C. attenuata adults captured in greenhouses was also studied, by observing both groups and isolated individuals. Data on lifespan, daily number of preys per adult, daily number of laid eggs and hatching rate were recorded, and the effects of different foods on these parameters were analyzed. The following foods were compared: D. melanogaster adults only, as preys for C. attenuata; D. melanogaster adults and a water-honey solution; the water-honey solution only. Honey resulted an effective food integration for C. attenuata, increasing lifespan and the number of egg laying females. It is possible that in greenhouses Coenosia adults complete the preys diet with nectar and/or honeydew. Moreover, the integration with honey reduced the daily preys consumption. This may allow to prevent cannibalism among Coenosia adults in the rearing conditions, where high population densities are required. A survey of the Coenosia species naturally present in Lombardy greenhouses was conducted. The species C. attenuata, C. strigipes, C. tigrina and C. atra were detected. C. attenuata resulted the most common, recorded in most greenhouses and for consecutive years. Besides, the presence of potential preys, weeds and the crops were recorded in each greenhouse. Nevertheless, it is difficult to determine the relation between these parameters and the presence of Coenosia species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis wad aimed at the study and application of titanium dioxide photocatalytic activity on ceramic materials. As a matter of fact, photocatalysis is a very promising method to face most of the problems connected with the increasing environmental pollution. Furthermore, titanium dioxide, in its anatase crystallographic phase, is one of the most investigated photocatalytic material and results to be perfectly compatible with silicate body mixes. That goal was pursued by two different strategies: 1. the addition to a body mix used for heavy clay products of several titania powders, with different mean crystallite size, surface area, morphology and anatase/rutile ratio and a titania nanosuspension as well. The titania addition followed two procedures: bulk and spray addition over the ceramic samples surface. Titania was added in two different percentages: 2.5 and 7.5 wt.% in both of the methods. The ceramic samples were then fired at three maximum temperatures: 900, 950 and 1000 °C. Afterwards, the photocatalytic activity of the prepared ceramic samples was evaluated by following the degradation of an organic compound in aqueous medium, under UV radiation. The influence of titania morphological characteristics on the photoactivity of the fired materials was studied by means of XRD and SEM observations. The ceramic samples, sprayed with a slip containing 7.5 wt.% of titania powder and fired at 900 °C, have the best photoactivity, with a complete photo-decomposition of the organic compound. At 1000 °C no sample acted as a photocatalyst due to the anatase-to-rutile phase transformation and to the reaction between titania and calcium and iron oxides in the raw materials. 2. The second one foresaw the synthesis of TiO2-SiO2 solid solutions, using the following stoichiometry: Ti1-xSixO2 where x = 0, 0.1, 0.3 and 0.5 atoms per formula unit (apfu). The mixtures were then fired following two thermal cycles, each with three maximum temperatures. The effect of SiO2 addition into the TiO2 crystal structure and, consequently, on its photocatalytic activity when fired at high temperature, was thoroughly investigated by means of XRD, XPS, FE-SEM, TEM and BET analysis. The photoactivity of the prepared powders was assessed both in gas and liquid phase. Subsequently, the TiO2-SiO2 solid solutions, previously fired at 900 °C, were sprayed over the ceramic samples surface in the percentage of 7.5 wt.%. The prepared ceramic samples were fired at 900 and 1000 °C. The photocatalytic activity of the ceramic samples was evaluated in liquid phase. Unfortunately, that samples did not show any appreciable photoactivity. In fact, samples fired at 900 °C showed a pretty low photoactivity, while the one fired at 1000 °C showed no photoactivity at all. This was explained by the excessive coarsening of titania particles. To summarise, titania particle size, more than its crystalline phase, seems to have a relevant role in the photocatalytic activity of the ceramic samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leaf rust caused by Puccinia triticina is a serious disease of durum wheat (Triticum durum) worldwide. However, genetic and molecular mapping studies aimed at characterizing leaf rust resistance genes in durum wheat have been only recently undertaken. The Italian durum wheat cv. Creso shows a high level of resistance to P. triticina that has been considered durable and that appears to be due to a combination of a single dominant gene and one or more additional factors conferring partial resistance. In this study, the genetic basis of leaf rust resistance carried by Creso was investigated using 176 recombinant inbred lines (RILs) from the cross between the cv. Colosseo (C, leaf rust resistance donor) and Lloyd (L, susceptible parent). Colosseo is a cv. directly related to Creso with the leaf rust resistance phenotype inherited from Creso, and was considered as resistance donor because of its better adaptation to local (Emilia Romagna, Italy) cultivation environment. RILs have been artificially inoculated with a mixture of 16 Italian P. triticina isolates that were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each carrying a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci, in order to determine their specialization with regard to the host species. The characterization of the leaf rust isolates was conducted at the Cereal Disease Laboratory of the University of Minnesota (St. Paul, USA) (Chapter 2). A genetic linkage map was constructed using segregation data from the population of 176 RILs from the cross CL. A total of 662 loci, including 162 simple sequence repeats (SSRs) and 500 Diversity Arrays Technology markers (DArTs), were analyzed by means of the package EasyMap 0.1. The integrated SSR-DArT linkage map consisted of 554 loci (162 SSR and 392 DArT markers) grouped into 19 linkage blocks with an average marker density of 5.7 cM/marker. The final map spanned a total of 2022 cM, which correspond to a tetraploid genome (AABB) coverage of ca. 77% (Chapter 3). The RIL population was phenotyped for their resistance to leaf rust under artificial inoculation in 2006; the percentage of infected leaf area (LRS, leaf rust susceptibility) was evaluated at three stages through the disease developmental cycle and the area under disease progress curve (AUDPC) was then calculated. The response at the seedling stage (infection type, IT) was also investigated. QTL analysis was carried out by means of the Composite Interval Mapping method based on a selection of markers from the CL map. A major QTL (QLr.ubo-7B.2) for leaf rust resistance controlling both the seedling and the adult plant response, was mapped on the distal region of chromosome arm 7BL (deletion bin 7BL10-0.78-1.00), in a gene-dense region known to carry several genes/QTLs for resistance to rusts and other major cereal fungal diseases in wheat and barley. QLr.ubo-7B.2 was identified within a supporting interval of ca. 5 cM tightly associated with three SSR markers (Xbarc340.2, Xgwm146 e Xgwm344.2), and showed an R2 and an LOD peak value for the AUDPC equal to 72.9% an 44.5, respectively. Three additional minor QTLs were also detected (QLr.ubo-7B.1 on chr. 7BS; QLr.ubo-2A on chr. 2AL and QLr.ubo-3A on chr. 3AS) (Chapter 4). The presence of the major QTL (QLr.ubo-7B.2) was validated by a linkage disequilibrium (LD)-based test using field data from two different plant materials: i) a set of 62 advanced lines from multiple crosses involving Creso and his directly related resistance derivates Colosseo and Plinio, and ii) a panel of 164 elite durum wheat accessions representative of the major durum breeding program of the Mediterranean basin. Lines and accessions were phenotyped for leaf rust resistance under artificial inoculation in two different field trials carried out at Argelato (BO, Italy) in 2006 and 2007; the durum elite accessions were also evaluated in two additional field experiments in Obregon (Messico; 2007 and 2008) and in a green-house experiment (seedling resistance) at the Cereal Disease Laboratory (St. Paul, USA, 2008). The molecular characterization involved 14 SSR markers mapping on the 7BL chromosome region found to harbour the major QTL. Association analysis was then performed with a mixed-linear-model approach. Results confirmed the presence of a major QTL for leaf rust resistance, both at adult plant and at seedling stage, located between markers Xbarc340.2, Xgwm146 and Xgwm344.2, in an interval that coincides with the supporting interval (LOD-2) of QLr.ubo-7B.2 as resulted from the RIL QTL analysis. (Chapter 5). The identification and mapping of the major QTL associated to the durable leaf rust resistance carried by Creso, together with the identification of the associated SSR markers, will enhance the selection efficiency in durum wheat breeding programs (MAS, Marker Assisted Selection) and will accelerate the release of cvs. with durable resistance through marker-assisted pyramiding of the tagged resistance genes/QTLs most effective against wheat fungal pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among various nanoparticles, noble metal nanoparticles have attracted considerable attention due to their optical, catalytic and conducting properties. This work has been focused on the development of an innovative method of synthesis for the preparation of metal nanosuspensions of Au, Ag, Cu, in order to achieve stable sols, showing suitable features to allow an industrial scale up of the processes. The research was developed in collaboration with a company interested in the large scale production of the studied nanosuspensions. In order to develop a commercial process, high solid concentration, long time colloidal stability and particle size control, are required. Two synthesis routes, differing by the used solvents, have been implemented: polyol based and water based synthesis. In order to achieve a process intensification the microwave heating has been applied. As a result, colloidal nanosuspensions with suitable dimensions, good optical properties, very high solid content and good stability, have been synthesized by simple and environmental friendly methods. Particularly, due to some interesting results an optimized synthesis process has been patented. Both water and polyol based synthesis, developed in the presence of a reducing agent and of a chelating polymer, allowed to obtain particle size-control and colloidal stability by tuning the different parameters. Furthermore, it has been verified that microwave device, due to its rapid and homogeneous heating, provides some advantages over conventional method. In order to optimize the final suspensions properties, for each synthesis it has been studied the effect of different parameters (temperature, time, precursors concentrations, etc) and throughout a specific optimization action a right control on nucleation and growth processes has been achieved. The achieved nanoparticles were confirmed by XRD analysis to be the desired metal phases, even at the lowest synthesis temperatures. The particles showed a diameter, measured by STEM and dynamic light scattering technique (DLS), ranging from 10 to 60 nm. Surface plasmon resonance (SPR) was monitored by UV-VIS spectroscopy confirming its dependence by nanoparticles size and shape. Moreover the reaction yield has been assessed by ICP analysis performed on the unreacted metal cations. Finally, thermal conductivity and antibacterial activity characterizations of copper and silver sols respectively are now ongoing in order to check their application as nanofluid in heat transfer processes and as antibacterial agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was performed to validate a spatial working memory task using pharmacological manipulations. The water escape T-maze, which combines the advantages of the Morris water maze and the T-maze while minimizes the disadvantages, was used. Scopolamine, a drug that affects cognitive function in spatial working memory tasks, significantly decreased the rat performance in the present delayed alternation task. Since glutamate neurotransmission plays an important role in the maintaining of working memory, we evaluated the effect of ionotropic and metabotropic glutamatergic receptors antagonists, administered alone or in combination, on rat behaviour. As the acquisition and performance of memory tasks has been linked to the expression of the immediately early gene cFos, a marker of neuronal activation, we also investigated the neurochemical correlates of the water escape T-maze after pharmacological treatment with glutamatergic antagonists, in various brain areas. Moreover, we focused our attention on the involvement of perirhinal cortex glutamatergic neurotransmission in the acquisition and/or consolidation of this particular task. The perirhinal cortex has strong and reciprocal connections with both specific cortical sensory areas and some memory-related structures, including the hippocampal formation and amygdala. For its peculiar position, perirhinal cortex has been recently regarded as a key region in working memory processes, in particular in providing temporary maintenance of information. The effect of perirhinal cortex lesions with ibotenic acid on the acquisition and consolidation of the water escape T-maze task was evaluated. In conclusion, our data suggest that the water escape T-maze could be considered a valid, simple and quite fast method to assess spatial working memory, sensible to pharmacological manipulations. Following execution of the task, we observed cFos expression in several brain regions. Furthermore, in accordance to literature, our results suggest that glutamatergic neurotransmission plays an important role in the acquisition and consolidation of working memory processes.