6 resultados para OVAL DEFECTS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.
Resumo:
III-nitride materials are very promising for high speed electronics/optical applications but still suffer in performance due to problems during high quality epitaxial growth, evolution of dislocation and defects, less understanding of fundamental physics of materials/processing of devices etc. This thesis mainly focus on GaN based heterostructures to understand the metal-semiconductor interface properties, 2DE(H)G influence on electrical and optical properties, and deep level states in GaN and InAlN, InGaN materials. The detailed electrical characterizations have been employed on Schottky diodes at GaN and InAl(Ga)N/GaN heterostructures in order to understand the metal-semiconductor interface related properties in these materials. I have observed the occurrence of Schottky barrier inhomogenity, role of dislocations in terms of leakage and creating electrically active defect states within energy gap of materials. Deep level transient spectroscopy method is employed on GaN, InAlN and InGaN materials and several defect levels have been observed related to majority and minority carriers. In fact, some defects have been found common in characteristics in ternary layers and GaN layer which indicates that those defect levels are from similar origin, most probably due to Ga/N vacancy in GaN/heterostructures. The role of structural defects, roughness has been extensively understood in terms of enhancing the reverse leakage current, suppressing the mobility in InAlN/AlN/GaN based high electron mobility transistor (HEMT) structures which are identified as key issues for GaN technology. Optical spectroscopy methods have been employed to understand materials quality, sub band and defect related transitions and compared with electrical characterizations. The observation of 2DEG sub band related absorption/emission in optical spectra have been identified and proposed for first time in nitride based polar heterostructures, which is well supported with simulation results. In addition, metal-semiconductor-metal (MSM)-InAl(Ga)N/GaN based photodetector structures have been fabricated and proposed for achieving high efficient optoelectronics devices in future.
Resumo:
Fracture mechanics plays an important role in the material science, structure design and industrial production due to the failure of materials and structures are paid high attention in human activities. This dissertation, concentrates on some of the fractural aspects of shaft and composite which have being increasingly used in modern structures, consists four chapters within two parts. Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress and displacement fields in the vicinity of a crack tip is introduced. A review involves the general methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering methods for a fast and close approximation of stress intensity factors of cracked or notched beams under tension, bending moment, shear force, as well as torque are presented. New formulae for calculating the stress intensity factors are proposed. One of the methods named Section Method is improved and applied to the three dimensional analysis of cracked circular section for calculating stress intensity factors. The comparisons between the present results and the solutions calculated by ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack extension angle for single mode and mixed mode, and the critical loading domain obtained by SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the crack propagation angle and the critical loading are investigated. Three different methods calculating the crack initiation angle for three-dimension analysis of various crack depth and crack position are compared. It should be noted that the stress intensity factors used in the criteria are calculated in section 2.1.
Resumo:
Articular cartilage lesions, with their inherent limited healing potential, are hard to treat and remain a challenging problem for orthopedic surgeons. Despite the development of several treatment strategies, the real potential of each procedure in terms of clinical benefit and effects on the joint degeneration processes is not clear. Aim of this PhD project was to evaluate the results, both in terms of clinical and imaging improvement, of new promising procedures developed to address the challenging cartilage pathology. Several studies have been followed in parallel and completed over the 3-year PhD, and are reported in detail in the following pages. In particular, the studies have been focused on the evaluation of the treatment indications of a scaffold based autologous chondrocyte implantation procedure, documenting its results for the classic indication of focal traumatic lesions, as well as its use for the treatment of more challenging patients, older, with degenerative lesions, or even as salvage procedure for more advanced stages of articular degeneration. The second field of study involved the analysis of the results obtained treating lesions of the articular surface with a new biomimetic osteochondral scaffold, which showed promise for the treatment of defects where the entire osteochondral unit is involved. Finally, a new minimally invasive procedure based on the use of growth factors derived from autologous platelets has been explored, showing results and underlining indicatios for the treatment of cartilage lesions and different stages of joint degeneration. These studies shed some light on the potential of the evaluated procedures, underlining good results as well as limits, they give some indications on the most appropriate candidates for their application, and document the current knowledge on cartilage treatment procedures suggesting the limitations that need to be addressed by future studies to improve the management of cartilage lesions.
Resumo:
This thesis will focus on the residual function and visual and attentional deficits in human patients, which accompany damage to the visual cortex or its thalamic afferents, and plastic changes, which follow it. In particular, I will focus on homonymous visual field defects, which comprise a broad set of central disorders of vision. I will present experimental evidence that when the primary visual pathway is completely damaged, the only signal that can be implicitly processed via subcortical visual networks is fear. I will also present data showing that in a patient with relative deafferentation of visual cortex, changes in the spatial tuning and response gain of the contralesional and ipsilesional cortex are observed, which are accompanied by changes in functional connectivity with regions belonging to the dorsal attentional network and the default mode network. I will also discuss how cortical plasticity might be harnessed to improve recovery through novel treatments. Moreover, I will show how treatment interventions aimed at recruiting spared subcortical pathway supporting multisensory orienting can drive network level change.