6 resultados para Mote hardware
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
ALICE, that is an experiment held at CERN using the LHC, is specialized in analyzing lead-ion collisions. ALICE will study the properties of quarkgluon plasma, a state of matter where quarks and gluons, under conditions of very high temperatures and densities, are no longer confined inside hadrons. Such a state of matter probably existed just after the Big Bang, before particles such as protons and neutrons were formed. The SDD detector, one of the ALICE subdetectors, is part of the ITS that is composed by 6 cylindrical layers with the innermost one attached to the beam pipe. The ITS tracks and identifies particles near the interaction point, it also aligns the tracks of the articles detected by more external detectors. The two ITS middle layers contain the whole 260 SDD detectors. A multichannel readout board, called CARLOSrx, receives at the same time the data coming from 12 SDD detectors. In total there are 24 CARLOSrx boards needed to read data coming from all the SDD modules (detector plus front end electronics). CARLOSrx packs data coming from the front end electronics through optical link connections, it stores them in a large data FIFO and then it sends them to the DAQ system. Each CARLOSrx is composed by two boards. One is called CARLOSrx data, that reads data coming from the SDD detectors and configures the FEE; the other one is called CARLOSrx clock, that sends the clock signal to all the FEE. This thesis contains a description of the hardware design and firmware features of both CARLOSrx data and CARLOSrx clock boards, which deal with all the SDD readout chain. A description of the software tools necessary to test and configure the front end electronics will be presented at the end of the thesis.
Resumo:
This work describes the development of a simulation tool which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics. It is a control oriented simulation tool, designed in order to perform both off-line (Software In the Loop) and on-line (Hardware In the Loop) simulation. In the first case the simulation tool can be used in order to optimize Engine Control Unit strategies (as far as regard, for example, the fuel consumption or the performance of the engine), while in the second case it can be used in order to test the control system. In recent years the use of HIL simulations has proved to be very useful in developing and testing of control systems. Hardware In the Loop simulation is a technology where the actual vehicles, engines or other components are replaced by a real time simulation, based on a mathematical model and running in a real time processor. The processor reads ECU (Engine Control Unit) output signals which would normally feed the actuators and, by using mathematical models, provides the signals which would be produced by the actual sensors. The simulation tool, fully designed within Simulink, includes the possibility to simulate the only engine, the transmission and vehicle dynamics and the engine along with the vehicle and transmission dynamics, allowing in this case to evaluate the performance and the operating conditions of the Internal Combustion Engine, once it is installed on a given vehicle. Furthermore the simulation tool includes different level of complexity, since it is possible to use, for example, either a zero-dimensional or a one-dimensional model of the intake system (in this case only for off-line application, because of the higher computational effort). Given these preliminary remarks, an important goal of this work is the development of a simulation environment that can be easily adapted to different engine types (single- or multi-cylinder, four-stroke or two-stroke, diesel or gasoline) and transmission architecture without reprogramming. Also, the same simulation tool can be rapidly configured both for off-line and real-time application. The Matlab-Simulink environment has been adopted to achieve such objectives, since its graphical programming interface allows building flexible and reconfigurable models, and real-time simulation is possible with standard, off-the-shelf software and hardware platforms (such as dSPACE systems).
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
The evolution of the electronics embedded applications forces electronics systems designers to match their ever increasing requirements. This evolution pushes the computational power of digital signal processing systems, as well as the energy required to accomplish the computations, due to the increasing mobility of such applications. Current approaches used to match these requirements relies on the adoption of application specific signal processors. Such kind of devices exploits powerful accelerators, which are able to match both performance and energy requirements. On the other hand, the too high specificity of such accelerators often results in a lack of flexibility which affects non-recurrent engineering costs, time to market, and market volumes too. The state of the art mainly proposes two solutions to overcome these issues with the ambition of delivering reasonable performance and energy efficiency: reconfigurable computing and multi-processors computing. All of these solutions benefits from the post-fabrication programmability, that definitively results in an increased flexibility. Nevertheless, the gap between these approaches and dedicated hardware is still too high for many application domains, especially when targeting the mobile world. In this scenario, flexible and energy efficient acceleration can be achieved by merging these two computational paradigms, in order to address all the above introduced constraints. This thesis focuses on the exploration of the design and application spectrum of reconfigurable computing, exploited as application specific accelerators for multi-processors systems on chip. More specifically, it introduces a reconfigurable digital signal processor featuring a heterogeneous set of reconfigurable engines, and a homogeneous multi-core system, exploiting three different flavours of reconfigurable and mask-programmable technologies as implementation platform for applications specific accelerators. In this work, the various trade-offs concerning the utilization multi-core platforms and the different configuration technologies are explored, characterizing the design space of the proposed approach in terms of programmability, performance, energy efficiency and manufacturing costs.
Resumo:
The new generation of multicore processors opens new perspectives for the design of embedded systems. Multiprocessing, however, poses new challenges to the scheduling of real-time applications, in which the ever-increasing computational demands are constantly flanked by the need of meeting critical time constraints. Many research works have contributed to this field introducing new advanced scheduling algorithms. However, despite many of these works have solidly demonstrated their effectiveness, the actual support for multiprocessor real-time scheduling offered by current operating systems is still very limited. This dissertation deals with implementative aspects of real-time schedulers in modern embedded multiprocessor systems. The first contribution is represented by an open-source scheduling framework, which is capable of realizing complex multiprocessor scheduling policies, such as G-EDF, on conventional operating systems exploiting only their native scheduler from user-space. A set of experimental evaluations compare the proposed solution to other research projects that pursue the same goals by means of kernel modifications, highlighting comparable scheduling performances. The principles that underpin the operation of the framework, originally designed for symmetric multiprocessors, have been further extended first to asymmetric ones, which are subjected to major restrictions such as the lack of support for task migrations, and later to re-programmable hardware architectures (FPGAs). In the latter case, this work introduces a scheduling accelerator, which offloads most of the scheduling operations to the hardware and exhibits extremely low scheduling jitter. The realization of a portable scheduling framework presented many interesting software challenges. One of these has been represented by timekeeping. In this regard, a further contribution is represented by a novel data structure, called addressable binary heap (ABH). Such ABH, which is conceptually a pointer-based implementation of a binary heap, shows very interesting average and worst-case performances when addressing the problem of tick-less timekeeping of high-resolution timers.
Resumo:
During the last few decades an unprecedented technological growth has been at the center of the embedded systems design paramount, with Moore’s Law being the leading factor of this trend. Today in fact an ever increasing number of cores can be integrated on the same die, marking the transition from state-of-the-art multi-core chips to the new many-core design paradigm. Despite the extraordinarily high computing power, the complexity of many-core chips opens the door to several challenges. As a result of the increased silicon density of modern Systems-on-a-Chip (SoC), the design space exploration needed to find the best design has exploded and hardware designers are in fact facing the problem of a huge design space. Virtual Platforms have always been used to enable hardware-software co-design, but today they are facing with the huge complexity of both hardware and software systems. In this thesis two different research works on Virtual Platforms are presented: the first one is intended for the hardware developer, to easily allow complex cycle accurate simulations of many-core SoCs. The second work exploits the parallel computing power of off-the-shelf General Purpose Graphics Processing Units (GPGPUs), with the goal of an increased simulation speed. The term Virtualization can be used in the context of many-core systems not only to refer to the aforementioned hardware emulation tools (Virtual Platforms), but also for two other main purposes: 1) to help the programmer to achieve the maximum possible performance of an application, by hiding the complexity of the underlying hardware. 2) to efficiently exploit the high parallel hardware of many-core chips in environments with multiple active Virtual Machines. This thesis is focused on virtualization techniques with the goal to mitigate, and overtake when possible, some of the challenges introduced by the many-core design paradigm.