18 resultados para Model System

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study is to develop and evaluate techniques that improve the spatial resolution of the channels already selected in the preliminary studies for Geostationary Observatory for Microwave Atmospheric Soundings (GOMAS). Reference high resolution multifrequency brightness temperatures scenarios have been derived by applying radiative transfer calculation to the spatially and microphysically detailed output of meteorological events simulated by the University of Wisconsin - Non-hydrostatic Model System (UW-NMS). Three approaches, Wiener filter, Super-Resolution and Image Fusion have been applied to some representative GOMAS frequency channels to enhance the resolution of antenna temperatures. The Wiener filter improved resolution of the largely oversampled images by a factor 1.5- 2.0 without introducing any penalty in the radiometric accuracy. Super-resolution, suitable for not largely oversampled images, improved resolution by a factor ~1.5 but introducing an increased radiometric noise by a factor 1.4-2.5. The image fusion allows finally to further increase the spatial frequency of the images obtained by the Wiener filter increasing the total resolution up to a factor 5.0 with an increased radiometric noise closely linked to the radiometric frequency and to the examined case study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During my PhD I have been involved in several projects regarding the morphogenesis of the follicular epithelium, such as the analysis of the pathways that correlate follicular epithelium patterning and eggshell genes expression. Moreover, I used the follicular epithelium as a model system to analyze the function of the Drosophila homolog of the human von Hippel-Lindau (d-VHL) during oogenesis, in order to gain insight into the role of h-VHL for the pathogenesis of VHL disease. h-VHL is implicated in a variety of processes and there is now a greater appreciation of HIF-independent h-VHL functions that are relevant to tumour development, including maintenance and organization of the primary cilium, maintenance of the differentiated phenotype in renal cells and regulation of epithelial-mesenchymal transition. However, the function of h-VHL gene during development has not been fully understood. It was previously shown that d-VHL down-regulates the motility of tubular epithelial cells (tracheal cells) during embryogenesis. Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. Therefore, to examine whether d-VHL has a role in epithelial morphogenesis and maintenance, I performed genetic and molecular analyses by using in vivo and in vitro approaches. From my analysis, I determined that d-VHL binds to and stabilizes microtubules. Loss of d-VHL depolymerizes the microtubule network during oogenesis, leading to a possible deregulation in the subcellular trafficking transport of polarity markers from Golgi apparatus to the different domains in which follicle cells are divided. The analysis carried out has allowed to establish a significant role of d-VHL in the maintenance of the follicular epithelium integrity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent knowledge supports the hypothesis that, beyond meeting nutrition needs, diet may modulate various functions in the body and play beneficial roles in some diseases. Research on functional foods is addressing the physiologic effects and health benefits of foods and food components, with the aim of authorizing specific health claims. The recognition that oxidative stress plays a major role in the pathophysiology of cardiac disorders has led to extensive investigations of the protective effects of exogenous antioxidants, but results are controversial. A promising strategy for protecting cardiac cells against oxidative damage may be through the induction of endogenous phase 2 enzymes with the enhancement of cellular antioxidant capacity. Sulforaphane (SF), a naturally occurring isothiocyanate abundant in Cruciferous vegetables, has gained attention as a potential chemopreventive compound thanks to its ability to induce several classes of genes implicated in reactive oxygen species (ROS) and electrophiles detoxification. Antioxidant responsive element (ARE)-mediated gene induction is a pivotal mechanism of cellular defence against the toxicity of electrophiles and ROS. The transcription factor NF-E2-related factor-2 (Nrf2), is essential for the up-regulation of these genes. We investigated whether SF could exert cardioprotective effects against oxidative stress and elucidated the mechanisms underpinning these effects. Accordingly, using cultured rat neonatal cardiomyocytes as a model system, we evaluated the time-dependent induction of gene transcription, the corresponding protein expression and activity of various antioxidant and phase 2 enzymes (catalase, superoxide dismutase, glutathione and related enzymes glutathione reductase, glutathione peroxidase and glutathione S-transferase, NAD(P)H: quinone oxidoreductase 1 and thioredoxine reductase) elicited by SF. The results were correlated to intracellular ROS production and cell viability after oxidative stress generated by H2O2, and confirmed the ability of SF to exert cytoprotective effects acting as an indirect antioxidant. Furthermore, to get better insight into SF mechanism of action, we investigated the effect of SF treatment on Nrf2 and the upstream signalling pathways MAPK ERK1/2 and PI3K/Akt, known to mediate a pro survival signal in the heart. The use of specific inhibitors of ERK1/2 and Akt phosphorylation demonstrated their involvement in phase 2 enzymes induction. The concentration of SF tested in this study is comparable to peak plasma concentration achieved after dietary exposure giving clear relevance to our data to support dietary intake of Cruciferous vegetables in cytoprotection against oxidative stress, a common determinant of many cardiovascular diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myc is a transcription factor that can activate transcription of several hundreds genes by direct binding to their promoters at specific DNA sequences (E-box). However, recent studies have also shown that it can exert its biological role by repressing transcription. Such studies collectively support a model in which c-Myc-mediated repression occurs through interactions with transcription factors bound to promoter DNA regions but not through direct recognition of typical E-box sequences. Here, we investigated whether N-Myc can also repress gene transcription, and how this is mechanistically achieved. We used human neuroblastoma cells as a model system in that N-MYC amplification/over-expression represents a key prognostic marker of this tumour. By means of transcription profile analyses we could identify at least 5 genes (TRKA, p75NTR, ABCC3, TG2, p21) that are specifically repressed by N-Myc. Through a dual-step-ChIP assay and genetic dissection of gene promoters, we found that N-Myc is physically associated with gene promoters in vivo, in proximity of the transcription start site. N-Myc association with promoters requires interaction with other proteins, such as Sp1 and Miz1 transcription factors. Furthermore, we found that N-Myc may repress gene expression by interfering directly with Sp1 and/or with Miz1 activity (i.e. TRKA, p75NTR, ABCC3, p21) or by recruiting Histone Deacetylase 1 (Hdac1) (i.e. TG2). In vitro analyses show that distinct N-Myc domains can interact with Sp1, Miz1 and Hdac1, supporting the idea that Myc may participate in distinct repression complexes by interacting specifically with diverse proteins. Finally, results show that N-Myc, through repressed genes, affects important cellular functions, such as apoptosis, growth, differentiation and motility. Overall, our results support a model in which N-Myc, like c-Myc, can repress gene transcription by direct interaction with Sp1 and/or Miz1, and provide further lines of evidence on the importance of transcriptional repression by Myc factors in tumour biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we elucidate the role of polyunsaturated fatty acids (PUFAs) in the prevention of cardiovascular diseases, focusing the attention on their role in the modulation of acyl composition of cell lipids and of gene expression. Regarding this latter mechanism, the effectiveness of PUFAs as activators of two transcriptional factors, SREBPs and PPARs, have been considered. Two different model system have been used: primary cultures of neonatal rat cardiomyocytes and an human hepatoma cell line (HepG2). Cells have been supplemented with different PUFAs at physiological concentration, and special attention has been devoted to the main n-3 PUFAs, EPA and DHA. PUFAs influence on global gene expression in cardiomyocytes has been evaluated using microarray technique. Furthermore, since it is not fully elucidated which transcription factors are involved in this modulation in the heart, expression and activation of the three different PPAR isoforms have been investigated. Hepatocytes have been used as experimental model system in the evaluation of PUFAs effect on SREBP activity. SREBPs are considered the main regulator of cholesterol and triglyceride synthesis, which occur mainly in the liver. In both experimental models the modification of cell lipid fatty acid composition subsequent to PUFAs supplementation has been evaluated, and related to the effects observed at molecular level. The global vision given by the obtained results may be important for addressing new researches and be useful to educators and policy makers in setting recommendations for reaching optimal health through good nutrition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this PhD-thesis, two methodologies for enantioselective intramolecular ring closing reaction on indole cores are presented. The first methodology represents a highly stereoselective alkylation of the indole N1-nitrogen, leading to 3,4-dihydro-pyrazinoindol-1-ones – a structural class which is known for its activity on the CNS and therefore of high pharmacological interest concerning related diseases. In this approach, N-benzyl cinchona-alkaloids were used for the efficient catalysis of intramolecular aza-Michael reactions. Furthermore, computational studies in collaboration with the research group Prof. Andrea Bottoni (Department of Chemistry “G. Ciamician”, Bologna) were accomplished in order to get insight into the key interactions between catalyst and substrate, leading to enantiomeric excesses up to 91%. The results of the calculations on a model system are in accordance with the experimental results and demonstrate the high sensibility of the system towards structural modifications. The second project deals with a metal catalyzed, intramolecular Friedel-Crafts (FC)-reaction on indolyl substrates, carrying a side chain which on its behalf is furnished with an allylic alcohol unit. Allylic alcohols are part of the structural class of “π-activated alcohols” – alcohols, which are more easily activated due to the proximity to a π-unit (allyl-, propargyl-, benzyl-). The enantioselective intramolecular cyclization event is catalyzed efficiently by employment of a chiral Au(I)-catalyst, leading to 1-vinyl- or 4-vinyl-tetrahydrocarbazoles (THCs) under the formation of water as byproduct. This striking and novel process concerning the direct activation of alcohols in catalytic FC-reactions was subsequently extended to similar precursors, leading to functionalized tetrahydro-β-carbolines. These two methodologies represent highly efficient approaches towards the synthesis of scaffolds, which are of enormous pharmaceutical interest and amplify the spectra of enantioselective catalytic functionalisations of indoles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vertical profile of aerosol in the planetary boundary layer of the Milan urban area is studied in terms of its development and chemical composition in a high-resolution modelling framework. The period of study spans a week in summer of 2007 (12-18 July), when continuous LIDAR measurements and a limited set of balloon profiles were collected in the frame of the ASI/QUITSAT project. LIDAR observations show a diurnal development of an aerosol plume that lifts early morning surface emissions to the top of the boundary layer, reaching maximum concentration around midday. Mountain breeze from Alps clean the bottom of the aerosol layer, typically leaving a residual layer at around 1500-2000 m which may survive for several days. During the last two days under analysis, a dust layer transported from Sahara reaches the upper layers of Milan area and affects the aerosol vertical distribution in the boundary layer. Simulation from the MM5/CHIMERE modelling system, carried out at 1 km horizontal resolution, qualitatively reproduced the general features of the Milan aerosol layer observed with LIDAR, including the rise and fall of the aersol plume, the residual layer in altitude and the Saharan dust event. The simulation highlighted the importance of nitrates and secondary organics in its composition. Several sensitivity tests showed that main driving factors leading to the dominance of nitrates in the plume are temperature and gas absorption process. A modelling study turn to the analysis of the vertical aerosol profiles distribution and knowledge of the characterization of the PM at a site near the city of Milan is performed using a model system composed by a meteorological model MM5 (V3-6), the mesoscale model from PSU/NCAR and a Chemical Transport Model (CTM) CHIMERE to simulate the vertical aerosol profile. LiDAR continuous observations and balloon profiles collected during two intensive campaigns in summer 2007 and in winter 2008 in the frame of the ASI/QUITSAT project have been used to perform comparisons in order to evaluate the ability of the aerosol chemistry transport model CHIMERE to simulate the aerosols dynamics and compositions in this area. The comparisons of model aerosols with measurements are carried out over a full time period between 12 July 2007 and 18 July 2007. The comparisons demonstrate the ability of the model to reproduce correctly the aerosol vertical distributions and their temporal variability. As detected by the LiDAR, the model during the period considered, predicts a diurnal development of a plume during the morning and a clearing during the afternoon, typically the plume reaches the top of the boundary layer around mid day, in this time CHIMERE produces highest concentrations in the upper levels as detected by LiDAR. The model, moreover can reproduce LiDAR observes enhancement aerosols concentrations above the boundary layer, attributing the phenomena to dust out intrusion. Another important information from the model analysis regard the composition , it predicts that a large part of the plume is composed by nitrate, in particular during 13 and 16 July 2007 , pointing to the model tendency to overestimates the nitrous component in the particular matter vertical structure . Sensitivity study carried out in this work show that there are a combination of different factor which determine the major nitrous composition of the “plume” observed and in particular humidity temperature and the absorption phenomena are the mainly candidate to explain the principal difference in composition simulated in the period object of this study , in particular , the CHIMERE model seems to be mostly sensitive to the absorption process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays alternative energies are an extremely important topic and the possibility of using hydrogen as an energy carrier must be explored. Many problems infer the technological application of this abundant and powerful resource, one of them the possibility of storage. In the framework of suitable materials for hydrogen storage, magnesium has been the center of this study because it is cheap and the amount of stored hydrogen that it achieves (7.6 wt%) is extremely appealing. Nanostructure helps to overcome the slow hydrogen diffusion and the functionalization of surfaces with transition metals or oxides favors the hydrogen molecule dissociation/recombination. The aim of this research is the investigation of the metal-hydride transformation in magnesium nanoparticles synthesized by inert-gas condensation, exploiting the fact that they are a simple model system. The so produced nanostructured powder has been analyzed in response to nanoparticles surface functionalization by transition metal clusters, specifically palladium, nickel and titanium, chosen on the basis of their completely different Mg-related phase diagrams. The role of the intermetallic phases formed upon heating and hydrogenation treatments will be presented to provide a comprehensive picture of hydrogen sorption in this class of nanostructured storage materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Drosophila the steroid hormone ecdysone regulates a wide range of developmental and physiological responses, including reproduction, embryogenesis, postembryonic development and metamorphosis. Drosophila provides an excellent system to address some fundamental questions linked to hormone actions. In fact, the apparent relative simplicity of its hormone signaling pathways taken together with well-established genetic and genomic tools developed to this purpose, defines this insect as an ideal model system for studying the molecular mechanisms through which steroid hormones act. During my PhD research program I’ve analyzed the role of ecdysone signaling to gain insight into the molecular mechanisms through which the hormone fulfills its pleiotropic functions in two different developmental stages: the oogenesis and the imaginal wing disc morphogenesis. To this purpose, I performed a reverse genetic analysis to silence the function of two different genes involved in ecdysone signaling pathway, EcR and ecd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principal aim of this research project has been the evaluation of the specific role of yeasts in ripening processes of dry-cured meat products, i.e. speck and in salami produced by adding Lactobacilli starter cultures, i.e. L. sakei, L. casei, L. fermentum, L. rhamnosus, L.sakei + S.xylosus. In particular the contribution of the predominant yeasts to the hydrolytic patterns of meat proteins has been studied both in model system and in real products. In fact, although several papers have been published on the microbial, enzymatic, aromatic and chemical characterization of dry-cured meat e.g. ham over ripening, the specific role of yeasts has been often underestimated. Therefore this research work has been focused on the following aspects: 1. Characterization of the yeasts and lactic acid bacteria in samples of speck produced by different farms and analyzed during the various production and ripening phases 2. Characterization of the superficial or internal yeasts population in salami produced with or without the use of lactobacilli as starter cultures 3. Molecular characterization of different strains of yeasts and detection of the dominant biotypes able to survive despite environmental stress factors (such as smoke, salt) 4. Study of the proteolytic profiles of speck and salami during the ripening process and comparison with the proteolytic profiles produced in meat model systems by a relevant number of yeasts isolated from speck and salami 5. Study of the proteolytic profiles of Lactobacilli starter cultures in meat model systems 6. Comparative statistical analysis of the proteolytic profiles to find possible relationships between specific bands and peptides and specific microorganisms 7. Evaluation of the aromatic characteristics of speck and salami to assess relationships among the metabolites released by the starter cultures or the dominant microflora

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the human gut microbiota in impacting host’s health has been widely studied in the last decade. Notably, it has been recently demonstrated that diet and nutritional status are among the most important modifiable determinants of human health, through a plethora of presumptive mechanisms among which microbiota-mediated processes are thought to have a relevant role. At present, probiotics and prebiotics represent a useful dietary approach for influencing the composition and activity of the human gut microbial community. The present study is composed of two main sections, aimed at elucidating the probiotic potential of the yeast strain K. marxianus B0399, as well as the promising putative prebiotic activity ascribable to four different flours, naturally enriched in dietary fibres content. Here, by in vitro studies we demonstrated that K. marxianus B0399 possesses a number of beneficial and strain-specific properties desirable for a microorganism considered for application as a probiotics. Successively, we investigated the impact of a novel probiotic yoghurt containing B. animalis subsp. lactis Bb12 and K. marxianus B0399 on the gut microbiota of a cohort of subjects suffering from IBS and enrolled in a in vivo clinical study. We demonstrated that beneficial effects described for the probiotic yoghurt were not associated to significant modifications of the human intestinal microbiota. Additionally, using a colonic model system we investigated the impact of different flours (wholegrain rye and wheat, chickpeas and lentils 50:50, and barley milled grains) on the intestinal microbiota composition and metabolomic output, combining molecular and cellular analysis with a NMR metabolomics approach. We demonstrated that each tested flour showed peculiar and positive modulations of the intestinal microbiota composition and its small molecule metabolome, thus supporting the utilisation of these ingredients in the development of a variety of potentially prebiotic food products aimed at improving human health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the suitability of proteases realised by Yarrowia lipolytica to hydrolyse proteins of different origins available as industrial food by-products. Several strains of Y. lipolytica have been screened for the production of extracellular proteases by zymography. On the basis of the results some strains released only a protease having a MW of 37 kDa, which corresponds to the already reported acidic protease, while other produced prevalently or only a protease with a MW higher than 200 kDa. The proteases have been screened for their "cold attitude" on gelatin, gluten and skim milk. This property can be relevant from a biotechnological point of view in order to save energy consumption during industrial processes. Most of the strains used were endowed with proteolytic activity at 6 °C on all the three proteins. The proteolytic breakdown profiles of the proteins, detected at 27 °C, were different related to the specific strains of Y. lipolytica. The time course of the hydrolysis, tested on gelatin, affected the final bioactivities of the peptide mixtures produced. In particular, an increase in both the antioxidant and antimicrobial activities was detected when the protease of the strain Y. lipolytica 1IIYL4A was used. The final part of this work was focused on the improvement of the peptides bioactivities through a novel process based on the production of glycopeptides. Firstly, the main reaction parameters were optimized in a model system, secondly a more complex system, based on gluten hydrolysates, was taken into consideration to produce glycopeptides. The presence of the sugar moiety reduced the hydrophobicity of the glycopeptides, thus affecting the final antimicrobial activity which was significantly improved. The use of this procedure could be highly effective to modify peptides and can be employed to create innovative functional peptides using a mild temperature process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Childhood neuroblastoma is the most common solid tumour of infancy and highly refractory to therapy. One of the most powerful prognostic indicators for this disease is the N-Myc gene amplification, which occurs in approximately 25% of all neuroblastomas. N-Myc is a member of transcription factors belonging to a subclass of the larger group of proteins sharing Basic-Region/Helix–Loop–Helix/Leucin-Zipper (BR/HLH/LZ) motif. N-Myc oncoproteins may determine activation or repression of several genes thanks to different protein-protein interactions that may modulate its transcriptional regulatory ability and therefore its potential for oncogenicity. Chromatin modifications, including histone methylation, have a crucial role in transcription de-regulation of many cancer-related genes. Here, it was investigated whether N-Myc can functionally and/or physically interact with two different factors involved in methyl histone modification: WDR5 (core member of the MLL/Set1 methyltransferase complex) and the de- methylase LSD1. Co-IP assays have demonstrated the presence of both N-Myc-WDR5 and N-Myc-LSD1 complexes in two neuroblastoma cell lines. Human N-Myc amplified cell lines were used as a model system to investigate on transcription activation and/or repression mechanisms carried out by N-Myc-LSD1 and N-Myc-WDR5 protein complexes. qRT-PCR and immunoblot assays underlined the ability of both complexes to positively (N-Myc-WDR5) and negatively (N-Myc-LSD1) influence transcriptional regulation of crititical neuroblastoma N-Myc-related genes, MDM2, p21 and Clusterin. Ch-IP experiments have revealed the binding of the N-Myc complexes above mentioned to the gene promoters analysed. Finally, pharmacological treatment pointed to abolish N-Myc and LSD1 activity were performed to test cellular alterations, such as cell viability and cell cycle progression. Overall, the results presented in this work suggest that N-Myc can interact with two distinct histone methyl modifiers to positively and negatively affect gene transcription in neuroblastoma.