6 resultados para Mechanical characteristics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The traditional lime mortar is composed of hydrated lime, sand and water. Besides these constituents it may also contain additives aiming to modify fresh mortar´s properties and/or to improve hardened mortar´s strength and durability. Already in the first civilizations various additives were used to enhance mortar´s quality, among the organic additives, linseed oil was one of the most common. From literature we know that it was used already in Roman period to reduce water permeability of a mortar, but the mechanism and the technology, e.g. effects of different dosages, are not clearly explained. There are only few works studying the effect of oil experimentally. Knowing the function of oil in historical mortars is important for designing a new compatible repair mortar. Moreover, linseed oil addition could increase the sometimes insufficient durability of lime-based mortars used for reparation and it could be a natural alternative to synthetic additives. In the present study, the effect of linseed oil on the properties of six various lime-based mortars has been studied. Mortars´ compositions have been selected with respect to composition of historical mortars, but also mortars used in a modern restoration practise have been tested. Oil was added in two different concentrations – 1% and 3% by the weight of binder. The addition of 1% of linseed oil has proved to have positive effect on mortars´ properties. It improves mechanical characteristics and limits water absorption into mortar without affecting significantly the total open porosity or decreasing the degree of carbonation. On the other hand, the 3% addition of linseed oil is making mortar to be almost hydrophobic, but it markedly decreases mortars´ strength. However, all types of tested lime-based mortars with the oil addition showed significantly decreased water and salt solution absorption by capillary rise. Addition of oil into mortars is also decreasing the proportion of pores which are easily accessible to water. Furthermore, mortars with linseed oil showed significantly improved resistance to salt crystallization and freeze-thaw cycles. On the base of the obtained results, the addition of 1% of linseed oil can be taken into consideration in the design of mortars meant to repair or replace historic mortars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodegradable polymers for short time applications have attracted much interest all over the world. The reason behind this growing interest is the incompatibility of the polymeric wastes with the environment where they are disposed after usage. Synthetic aliphatic polyesters represent one of the most economically competitive biodegradable polymers. In addition, they gained considerable attention as they combine biodegradability and biocompatibility with interesting physical and chemical properties. In this framework, the present research work focused on the modification by reactive blending and polycondensation of two different aliphatic polyesters, namely poly(butylene succinate) (PBS) and poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE). Both are characterized by good thermal properties, but their mechanical characteristics do not fit the requirements for applications in which high flexibility is requested and, moreover, both show slow biodegradation rate. With the aim of developing new materials with improved characteristics with respect to the parent homopolymers, novel etheroatom containing PBS and PBCE-based fully aliphatic polyesters and copolyesters have been therefore synthesized and carefully characterized. The introduction of oxygen or sulphur atoms along the polymer chains, by acting on chemical composition or molecular architecture, tailored solid-state properties and biodegradation rate: type and amount of comonomeric units and sequence distribution deeply affected the material final properties owing, among all, to the hydrophobic/hydrophilic ratio and to the different ability of the polymer to crystallize. The versatility of the synthesized copolymers has been well proved: as a matter of fact these polymers can be exploited both for biomedical and ecological applications. Feasibility of 3D electrospun scaffolds has been investigated, biocompatibility studies and controlled release of a model molecule showed good responses. As regards ecological applications, barrier properties and eco-toxicological assessments have been conducted with outstanding results. Finally, the ability of the novel polyesters to undergo both hydrolytic and enzymatic degradation has been demonstrated under physiological and environmental conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present thesis illustrates the research carried out during the PhD studies in Bioengineering. The research was aimed to characterise the human bone tissue, with particular regard to the differences between cortical and trabecular bone. The bone tissue characteristics that affect its mechanical properties were verified or identified, using an experimental approach, to corroborate or refute hypotheses based on the state of the art in bone tissue biomechanics. The studies presented in the present PhD thesis were designed to investigate aspects of bone tissue biomechanics, which were in need of a more in-depth examination since the data found in the literature was contradictory or scarce. In particular, the work was focalised on the characterisation of the basic structure of the bone tissue (groups of lamellae), its composition, its spatial organisation (trabecular bone microarchitecture) and their influence on the mechanical properties. In conclusion, the present thesis integrates eight different studies on the characterisation of bone tissue. A more in-depth examination of some of the aspects of bone tissue biomechanics where the data found in the literature was contradictory or scarce was performed. Bone tissue was investigated at several scales, from its composition up to its spatial organization, to determine which parameters influence the mechanical behaviour of the tissue. It was found that although the composition and real density of bone tissue are similar, the differences in structure at different levels cause differences between the two types of bone tissue (cortical and trabecular) in mechanical properties. However, the apparent density can still be considered a good predictor of the mechanical properties of both cortical and trabecular bone. Finally, it was found that the bone tissue characteristics might change when a pathology is present, as demonstrated for OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bread dough and particularly wheat dough, due to its viscoelastic behaviour, is probably the most dynamic and complicated rheological system and its characteristics are very important since they highly affect final products’ textural and sensorial properties. The study of dough rheology has been a very challenging task for many researchers since it can provide numerous information about dough formulation, structure and processing. This explains why dough rheology has been a matter of investigation for several decades. In this research rheological assessment of doughs and breads was performed by using empirical and fundamental methods at both small and large deformation, in order to characterize different types of doughs and final products such as bread. In order to study the structural aspects of food products, image analysis techniques was used for the integration of the information coming from empirical and fundamental rheological measurements. Evaluation of dough properties was carried out by texture profile analysis (TPA), dough stickiness (Chen and Hoseney cell) and uniaxial extensibility determination (Kieffer test) by using a Texture Analyser; small deformation rheological measurements, were performed on a controlled stress–strain rheometer; moreover the structure of different doughs was observed by using the image analysis; while bread characteristics were studied by using texture profile analysis (TPA) and image analysis. The objective of this research was to understand if the different rheological measurements were able to characterize and differentiate the different samples analysed. This in order to investigate the effect of different formulation and processing conditions on dough and final product from a structural point of view. For this aim the following different materials were performed and analysed: - frozen dough realized without yeast; - frozen dough and bread made with frozen dough; - doughs obtained by using different fermentation method; - doughs made by Kamut® flour; - dough and bread realized with the addition of ginger powder; - final products coming from different bakeries. The influence of sub-zero storage time on non-fermented and fermented dough viscoelastic performance and on final product (bread) was evaluated by using small deformation and large deformation methods. In general, the longer the sub-zero storage time the lower the positive viscoelastic attributes. The effect of fermentation time and of different type of fermentation (straight-dough method; sponge-and-dough procedure and poolish method) on rheological properties of doughs were investigated using empirical and fundamental analysis and image analysis was used to integrate this information throughout the evaluation of the dough’s structure. The results of fundamental rheological test showed that the incorporation of sourdough (poolish method) provoked changes that were different from those seen in the others type of fermentation. The affirmative action of some ingredients (extra-virgin olive oil and a liposomic lecithin emulsifier) to improve rheological characteristics of Kamut® dough has been confirmed also when subjected to low temperatures (24 hours and 48 hours at 4°C). Small deformation oscillatory measurements and large deformation mechanical tests performed provided useful information on the rheological properties of samples realized by using different amounts of ginger powder, showing that the sample with the highest amount of ginger powder (6%) had worse rheological characteristics compared to the other samples. Moisture content, specific volume, texture and crumb grain characteristics are the major quality attributes of bread products. The different sample analyzed, “Coppia Ferrarese”, “Pane Comune Romagnolo” and “Filone Terra di San Marino”, showed a decrease of crumb moisture and an increase in hardness over the storage time. Parameters such as cohesiveness and springiness, evaluated by TPA that are indicator of quality of fresh bread, decreased during the storage. By using empirical rheological tests we found several differences among the samples, due to the different ingredients used in formulation and the different process adopted to prepare the sample, but since these products are handmade, the differences could be account as a surplus value. In conclusion small deformation (in fundamental units) and large deformation methods showed a significant role in monitoring the influence of different ingredients used in formulation, different processing and storage conditions on dough viscoelastic performance and on final product. Finally the knowledge of formulation, processing and storage conditions together with the evaluation of structural and rheological characteristics is fundamental for the study of complex matrices like bakery products, where numerous variable can influence their final quality (e.g. raw material, bread-making procedure, time and temperature of the fermentation and baking).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The durability of stone building materials is an issue of utmost importance in the field of monument conservation. In order to be able to preserve our built cultural heritage, the thorough knowledge of its constituent materials and the understanding of the processes that affect them are indispensable. The main objective of this research was to evaluate the durability of a special stone type, the crystalline stones, in correlation with their intrinsic characteristics, the petrophysical properties. The crystalline stones are differentiated from the cemented stones on the basis of textural features. Their most important specific property is the usually low, fissure-like porosity. Stone types of significant monumental importance, like the marble or granite belong to this group. The selected materials for this investigation, indeed, are a marble (Macael marble, Spain) and a granite (Silvestre Vilachán granite, Spain). In addition, an andesite (Szob andesite, Hungary) also of significant monumental importance was selected. This way a wide range of crystalline rocks is covered in terms of petrogenesis: stones of metamorphic, magmatic and volcanic origin, which can be of importance in terms of mineralogical, petrological or physical characteristics. After the detailed characterization of the petrophysical properties of the selected stones, their durability was assessed by means of artificial ageing. The applied ageing tests were: the salt crystallization, the frost resistance in pure water and in the presence of soluble salts, the salt mist and the action of SO2 in the presence of humidity. The research aimed at the understanding of the mechanisms of each weathering process and at finding the petrophysical properties most decisive in the degradation of these materials. Among the several weathering mechanisms, the most important ones were found to be the physical stress due to crystallization pressure of both salt and ice, the thermal fatigue due to cyclic temperature changes and the chemical reactions (mostly the acidic attack) between the mineral phases and the external fluids. The properties that fundamentally control the degradation processes, and thus the durability of stones were found to be: the mineralogical and chemical composition; the hydraulic properties especially the water uptake, the permeability and the drying; the void space structure, especially the void size and aperture size distribution and the connectivity of the porous space; and the thermal and mechanical properties. Because of the complexity of the processes and the high number of determining properties, no mechanisms or characteristics could be identified as typical for crystalline stones. The durability or alterability of each stone type must be assessed according to its properties and not according to the textural or petrophysical classification they belong to. Finally, a critical review of standardized methods is presented, based on which an attempt was made for recommendations of the most adequate methodology for the characterization and durability assessment of crystalline stones.