23 resultados para Measuring scale development
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Although there is broad agreement on the need to transition to a fairer agro-food system, consumer potential in shaping a fair food system has often been overlooked. There is no unique definition of the concept of fairness from the consumer’s perspective. In addition, there are no scales in the academic literature that address fairness in its broad sense, as the existing scales focus on specific and limited aspects that provide a partial picture of the concept. Lack of a true and trustworthy measurement of the notion has been a significant barrier to the knowledge of fairness in agro-food systems from the individual-differences perspective. The individual-differences perspective helps explain why some individuals are more likely than others to put emphasis on the extent to which agro-food chains are fair. Individual consumer perception of an ethical problem is followed by the perception of various alternatives that might lead to a solution. Therefore, the current research intends to make two significant contributions by resolving these constraints. First, advance the literature by providing a new viewpoint to understand fairness in the agro-food chain. Indeed, the research provides a comprehensive conceptualisation of fairness that embraces different aspects of fairness and describes the concept in all its facets and nuances. Second, the research provides a valid, reliable, and invariant measurement of the individual disposition toward fairness in agro-food chains by rooting the items in the theoretical underpinnings of the fairness literature. Overall, this research provides a comprehensive suite of approaches and tools to enhance the resilience, integrity and sustainability of agro-food chains.
Resumo:
Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.
Resumo:
This artwork reports on two different projects that were carried out during the three years of Doctor of the Philosophy course. In the first years a project regarding Capacitive Pressure Sensors Array for Aerodynamic Applications was developed in the Applied Aerodynamic research team of the Second Faculty of Engineering, University of Bologna, Forlì, Italy, and in collaboration with the ARCES laboratories of the same university. Capacitive pressure sensors were designed and fabricated, investigating theoretically and experimentally the sensor’s mechanical and electrical behaviours by means of finite elements method simulations and by means of wind tunnel tests. During the design phase, the sensor figures of merit are considered and evaluated for specific aerodynamic applications. The aim of this work is the production of low cost MEMS-alternative devices suitable for a sensor network to be implemented in air data system. The last two year was dedicated to a project regarding Wireless Pressure Sensor Network for Nautical Applications. Aim of the developed sensor network is to sense the weak pressure field acting on the sail plan of a full batten sail by means of instrumented battens, providing a real time differential pressure map over the entire sail surface. The wireless sensor network and the sensing unit were designed, fabricated and tested in the faculty laboratories. A static non-linear coupled mechanical-electrostatic simulation, has been developed to predict the pressure versus capacitance static characteristic suitable for the transduction process and to tune the geometry of the transducer to reach the required resolution, sensitivity and time response in the appropriate full scale pressure input A time dependent viscoelastic error model has been inferred and developed by means of experimental data in order to model, predict and reduce the inaccuracy bound due to the viscolelastic phenomena affecting the Mylar® polyester film used for the sensor diaphragm. The development of the two above mentioned subjects are strictly related but presently separately in this artwork.
Resumo:
Coordinating activities in a distributed system is an open research topic. Several models have been proposed to achieve this purpose such as message passing, publish/subscribe, workflows or tuple spaces. We have focused on the latter model, trying to overcome some of its disadvantages. In particular we have applied spatial database techniques to tuple spaces in order to increase their performance when handling a large number of tuples. Moreover, we have studied how structured peer to peer approaches can be applied to better distribute tuples on large networks. Using some of these result, we have developed a tuple space implementation for the Globus Toolkit that can be used by Grid applications as a coordination service. The development of such a service has been quite challenging due to the limitations imposed by XML serialization that have heavily influenced its design. Nevertheless, we were able to complete its implementation and use it to implement two different types of test applications: a completely parallelizable one and a plasma simulation that is not completely parallelizable. Using this last application we have compared the performance of our service against MPI. Finally, we have developed and tested a simple workflow in order to show the versatility of our service.
Resumo:
Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.
Resumo:
This thesis is a part of a larger study about the characterization of mechanical and histomorphometrical properties of bone. The main objects of this study were the bone tissue properties and its resistance to mechanical loads. Moreover, the knowledge about the equipment selected to carry out the analyses, the micro-computed tomography (micro-CT), was improved. Particular attention was given to the reliability over time of the measuring instrument. In order to understand the main characteristics of bone mechanical properties a study of the skeletal, the bones of which it is composed and biological principles that drive their formation and remodelling, was necessary. This study has led to the definition of two macro-classes describing the main components responsible for the resistance to fracture of bone: quantity and quality of bone. The study of bone quantity is the current clinical standard measure for so-called bone densitometry, and research studies have amply demonstrated that the amount of tissue is correlated with its mechanical properties of elasticity and fracture. However, the models presented in the literature, including information on the mere quantity of tissue, have often been limited in describing the mechanical behaviour. Recent investigations have underlined that also the bone-structure and the tissue-mineralization play an important role in the mechanical characterization of bone tissue. For this reason in this thesis the class defined as bone quality was mainly studied, splitting it into two sub-classes of bone structure and tissue quality. A study on bone structure was designed to identify which structural parameters, among the several presented in the literature, could be integrated with the information about quantity, in order to better describe the mechanical properties of bone. In this way, it was also possible to analyse the iteration between structure and function. It has been known for long that bone tissue is capable of remodeling and changing its internal structure according to loads, but the dynamics of these changes are still being analysed. This part of the study was aimed to identify the parameters that could quantify the structural changes of bone tissue during the development of a given disease: osteoarthritis. A study on tissue quality would have to be divided into different classes, which would require a scale of analysis not suitable for the micro-CT. For this reason the study was focused only on the mineralization of the tissue, highlighting the difference between bone density and tissue density, working in a context where there is still an ongoing scientific debate.
Resumo:
The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.
Resumo:
The aim of this thesis was to describe the development of motion analysis protocols for applications on upper and lower limb extremities, by using inertial sensors-based systems. Inertial sensors-based systems are relatively recent. Knowledge and development of methods and algorithms for the use of such systems for clinical purposes is therefore limited if compared with stereophotogrammetry. However, their advantages in terms of low cost, portability, small size, are a valid reason to follow this direction. When developing motion analysis protocols based on inertial sensors, attention must be given to several aspects, like the accuracy of inertial sensors-based systems and their reliability. The need to develop specific algorithms/methods and software for using these systems for specific applications, is as much important as the development of motion analysis protocols based on them. For this reason, the goal of the 3-years research project described in this thesis was achieved first of all trying to correctly design the protocols based on inertial sensors, in terms of exploring and developing which features were suitable for the specific application of the protocols. The use of optoelectronic systems was necessary because they provided a gold standard and accurate measurement, which was used as a reference for the validation of the protocols based on inertial sensors. The protocols described in this thesis can be particularly helpful for rehabilitation centers in which the high cost of instrumentation or the limited working areas do not allow the use of stereophotogrammetry. Moreover, many applications requiring upper and lower limb motion analysis to be performed outside the laboratories will benefit from these protocols, for example performing gait analysis along the corridors. Out of the buildings, the condition of steady-state walking or the behavior of the prosthetic devices when encountering slopes or obstacles during walking can also be assessed. The application of inertial sensors on lower limb amputees presents conditions which are challenging for magnetometer-based systems, due to ferromagnetic material commonly adopted for the construction of idraulic components or motors. INAIL Prostheses Centre stimulated and, together with Xsens Technologies B.V. supported the development of additional methods for improving the accuracy of MTx in measuring the 3D kinematics for lower limb prostheses, with the results provided in this thesis. In the author’s opinion, this thesis and the motion analysis protocols based on inertial sensors here described, are a demonstration of how a strict collaboration between the industry, the clinical centers, the research laboratories, can improve the knowledge, exchange know-how, with the common goal to develop new application-oriented systems.
Resumo:
The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5’aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3’ end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the “Topo-Seq” approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5’ and 3’ ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3’ ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5’ ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.
Resumo:
In this PhD thesis the crashworthiness topic is studied with the perspective of the development of a small-scale experimental test able to characterize a material in terms of energy absorption. The material properties obtained are then used to validate a nu- merical model of the experimental test itself. Consequently, the numerical model, calibrated on the specific ma- terial, can be extended to more complex structures and used to simulate their energy absorption behavior. The experimental activity started at University of Washington in Seattle, WA (USA) and continued at Second Faculty of Engi- neering, University of Bologna, Forl`ı (Italy), where the numerical model for the simulation of the experimental test was implemented and optimized.
Resumo:
Synthetic biology is a young field of applicative research aiming to design and build up artificial biological devices, useful for human applications. How synthetic biology emerged in past years and how the development of the Registry of Standard Biological Parts aimed to introduce one practical starting solution to apply the basics of engineering to molecular biology is presented in chapter 1 in the thesis The same chapter recalls how biological parts can make up a genetic program, the molecular cloning tecnique useful for this purpose, and an overview of the mathematical modeling adopted to describe gene circuit behavior. Although the design of gene circuits has become feasible the increasing complexity of gene networks asks for a rational approach to design gene circuits. A bottom-up approach was proposed, suggesting that the behavior of a complicated system can be predicted from the features of its parts. The option to use modular parts in large-scale networks will be facilitated by a detailed and shared characterization of their functional properties. Such a prediction, requires well-characterized mathematical models of the parts and of how they behave when assembled together. In chapter 2, the feasibility of the bottom-up approach in the design of a synthetic program in Escherichia coli bacterial cells is described. The rational design of gene networks is however far from being established. The synthetic biology approach can used the mathematical formalism to identify biological information not assessable with experimental measurements. In this context, chapter 3 describes the design of a synthetic sensor for identifying molecules of interest inside eukaryotic cells. The Registry of Standard parts collects standard and modular biological parts. To spread the use of BioBricks the iGEM competition was started. The ICM Laboratory, where Francesca Ceroni completed her Ph.D, partecipated with teams of students and Chapter 4 summarizes the projects developed.
Resumo:
The present research aims at shedding light on the demanding puzzle characterizing the issue of child undernutrition in India. Indeed, the so called ‘Indian development paradox’ identifies the phenomenon according to which higher level of income per capita is recorded alongside a lethargic reduction in the proportion of underweight children aged below three years. Thus, in the time period occurring from 2000 to 2005, real Gross Domestic Production per capita has annually grown at 5.4%, whereas the proportion of children who are underweight has declined from 47% to 46%, a mere one point percent. Such trend opens up the space for discussing the traditionally assumed linkage between income-poverty and undernutrition as well as food intervention as the main focus of policies designed to fight child hunger. Also, it unlocks doors for evaluating the role of an alternative economic approach aiming at explaining undernutrition, such as the Capability Approach. The Capability Approach argues for widening the informational basis to account not only for resources, but also for variables related to liberties, opportunities and autonomy in pursuing what individuals value.The econometric analysis highlights the relevance of including behavioral factors when explaining child undernutrition. In particular, the ability of the mother to move freely in the community without the need of asking permission to her husband or mother-in-law is statistically significant when included in the model, which accounts also for confounding traditional variables, such as economic wealth and food security. Also, focusing on agency, results indicates the necessity of measuring autonomy in different domains and the need of improving the measurement scale for agency data, especially with regards the domain of household duties. Finally, future research is required to investigate policy venues for increasing agency in women and in the communities they live in as viable strategy for reducing the plague of child undernutrition in India.
Resumo:
The proposal in my thesis has been the study of Stereoselective α-alkylation through SN1 type reaction. SN1 type reaction involves a stabilized and reactive carbocation intermediate By taking advantages of stability of particular carbocations, the use of carbocations in selective reactions has been important. In this work has been necessary to know the stability and reactivity of carbocations. And the work of Mayr group has helped to rationalize the behaviour and reactivity between the carbocations and nucleophiles by the use of Mayr’s scale of reactivity. The use of alcohols to performed the stable and reactive carbocations have been the key in my thesis. The direct nucleophilic substitution of alcohols has been a crucial scope in the field of organic synthesis, because offer a wide range of intermediates for the synthesis of natural products and pharmaceutics synthesis. In particular the catalytic nucleophilic direct substitution of alcohols represents a novel methodology for the preparation of a variety of derivatives, and water only as the sub-product in the reaction. The stereochemical control of the transformation C-H bond into stereogenic C-C bond adjacent to carbonyl functionalized has been studied for asymmetric catalysis. And the field of organocatalysis has introduced the use of small organic molecule as catalyst for stereoselective transformations. Merging these two concepts Organocatalysis and Mayr’s scale, my thesis has developed a new approach for the α-alkylation of aldehydes and ketones through SN1 type reaction.
Resumo:
The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.