3 resultados para Magnesium, Supplementation, Hypomagnesemia

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium is an essential element for many biological processes crucial for cell life and proliferation. Growing evidences point out a role for this cation in the apoptotic process and in developing multi drug resistance (MDR) phenotype. The first part of this study aimed to highlight the involvement of the mitochondrial magnesium channel MRS2 in modulating drug-induced apoptosis. We generated an appropriate transgenic cellular system to regulate expression of MRS2 protein. The cells were then exposed to two different apoptotic agents commonly used in chemotherapy. The obtained results showed that cells overexpressing MRS2 channel are less responsiveness to pharmacological insults, looking more resistant to the induced apoptosis. Moreover, in normal condition, MRS2 overexpression induces higher magnesium uptake into isolated mitochondria respect to control cells correlating with an increment of total intracellular magnesium concentration. In the second part of this research we investigated whether magnesium intracellular content and compartmentalization could be used as a signature to discriminate MDR tumour cells from their sensitive counterparts. As MDR model we choose colon carcinoma cell line sensitive and resistant to doxorubicin. We exploited a standard-less approach providing a complete characterization of whole single-cells by combining X-Ray Fluorescence Microscopy , Atomic Force Microscopy and Scanning Transmission X-ray Microscopy. This method allows the quantification of the intracellular spatial distribution and total concentration of magnesium in whole dehydrated cells. The measurements, carried out in 27 single cells, revealed a different magnesium pattern for both concentration and distribution of the element in the two cellular strains. These results were then confirmed by quantifying the total amount of intracellular magnesium in a large populations of cells by using DCHQ5 probe and traditional fluorimetric technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to recent studies, antioxidant supplementation on gamete processing and/or storage solutions improvesgamete quality parameters, after cooling or storage at sub zero temperature. The aim of the present study was to investigate the effects of antioxidant supplementation on pig and horse gamete storage. The first study aimed to determine the effects of resveratrol (RESV) on the apoptotic status of porcine oocytes vitrified by Cryotop method, evaluating phosphatidylserine (PS) exteriorization and caspases activation. RESV(2µM) was added during: IVM (A); 2 h post-warming incubation (B); vitrification/warming and 2 h post-warming incubation (C); all previous phases (D). The obtained data demonstrate that RESV supplementation in the various steps of IVM and vitrification/warming procedure can modulate the apoptotic process, improving the resistance of porcine oocytes to cryopreservation-induced damage. In the second work different concentrations of RESV (10, 20, 40, and 80µM) were added during liquid storage of stallion sperm for 24 hours at either 10°C or 4°C, under anaerobic conditions. Our findings demonstrate that RESV supplementation does not enhance sperm quality of stallion semen after 24 hours of storage. Moreover, the highest RESV concentrations tested (40 and 80µM) could damage sperm functional status, probably acting as pro-oxidant. Finally, in the third work other two antioxidants, ascorbic acid (AA) (100 µM) and glutathione (GSH) (5mM) were added on boar freezing and/or thawing solutions. In our study different sperm parameters were evaluated before freezing and at 30 and 240 minutes after thawing. Our results showed that GSH and AA significantly improved boar sperm cryotolerance, especially when supplemented together to both freezing and thawing media. This improvement was observed in sperm viability and acrosome integrity, sperm motility, and nucleoprotein structure. Although ROS levels were not much increased by freeze-thawing procedures, the addition of GSH and AA to both freezing and thawing extenders significantly decreased intracellular peroxide levels.