22 resultados para Long non-coding RNA
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Cutaneous melanoma (CM) is a potentially lethal form of skin cancer and its most important histopathologic factor for staging is Breslow thickness (BT). Its correct determination is fundamental for pathologists. A deeper understanding of the molecular processes guiding CM pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs (miRNAs) play a key role in CM biology. The firs aim was to investigate miRNA expression in reference to BT assessment. We found that the combined miRNA expression of miR-21-5p and miR-146a-5p above or below 1.5 was significantly associated with overall survival and successfully identified all superficially spreading melanoma (SSM) patients with relapsing suggesting that the combined assessment of these miRNAs expression could aid in SSM staging. Secondly, we focus on multiple primary melanoma (MPM) patients, which develop multiple primary melanomas in their lifetime, and represent a model of high-risk CM occurrence. We explored the miRNome of single CM and MPM: CM and MPM present several dysregulated miRNAs, including key miRNAs involved in epithelial-mesenchymal transition. A different miRNA profile was observed between 1st and 2nd melanoma from the same patient. MiRNA target analysis revealed a more differentiated and less invasive status of MPMs compared to CMs. This characterization of the miRNA regulatory network of MPMs highlights molecular features differentiating this subtype from CM. Recently, NGS experiments revealed the existence of miRNA variants (isomiRs) with different length and sequence. We identified a shorter 3’isoform as tenfold over-represented compared to the canonical form of miR-125a-5p. Target analysis revealed that miRNA shortening could change the pattern of target gene regulation. Finally, we study miRNA and isomiR dysregulation in benign nevi (BN) and CM and in CM and melanoma metastasis. The reported non-random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies.
Resumo:
The importance of Helicobacter pylori as a human pathogen is underlined by the plethora of diseases it is responsible for. The capacity of H. pylori to adapt to the restricted host-associated environment andto evade the host immune response largely depends on a streamlined signalling network. The peculiar H. pylori small genome size combined with its paucity of transcriptional regulators highlights the relevance of post-transcriptional regulatory mechanisms as small non-coding RNAs (sRNAs). However, among the 8 RNases represented in H. pylori genome, a regulator guiding sRNAs metabolism is still not well studied. We investigated for the first time the physiological role in H. pylori G27 strain of the RNase Y enzyme. In the first line of research we provide a comprehensive characterization of the RNase Y activity by analysing its genomic organization and the factors that orchestrate its expression. Then, based on bioinformatic prediction models, we depict the most relevant determinants of RNase Y function, demonstrating a correlation of both structure and domain organization with orthologues represented in Gram-positive bacteria. To unveil the post-transcriptional regulatory effect exerted by the RNase Y, we compared the transcriptome of an RNase Y knock-out mutant to the parental wild type strain by RNA-seq approach. In the second line of research we characterized the activity of this single strand specific endoribonuclease on cag-PAI non coding RNA 1 (CncR1) sRNA. We found that deletion or inactivation of RNase Y led to the accumulation of a 3’-extended CncR1 (CncR1-L) transcript over time. Moreover, beneath its increased half-life, CncR1-L resembled a CncR1 inactive phenotype. Finally, we focused on the characterization of the in vivo interactome of CncR1. We set up a preliminary MS2-affinity purification coupled with RNA-sequencing (MAPS) approach and we evaluated the enrichment of specific targets, demonstrating the suitability of the technique in the H. pylori G27 strain.
Resumo:
The transcribed ultraconserved regions (T-UCRs) are a group of long non-coding RNAs involved in human carcinogenesis. The factors regulating the expression of T-UCRs and their mechanism of action in human cancers are unknown. In this work it was shown that high expression of uc.339 associates with lower survival in 204 non-small cell lung cancer (NSCLC) patients. Moreover, it was shown that uc.339 found up-regulated in archival NSCLC samples, acts as a decoy RNA for miR-339-3p, -663-3p and -95-5p. So, Cyclin E2, a direct target of three microRNAs is up-regulated, inducing cancer growth and migration. Evidence of this mechanism was provided from cell lines and primary samples confirming that TP53 directly regulates uc.339. These results support a key role for uc.339 in lung cancer.
Resumo:
From the late 1980s, the automation of sequencing techniques and the computer spread gave rise to a flourishing number of new molecular structures and sequences and to proliferation of new databases in which to store them. Here are presented three computational approaches able to analyse the massive amount of publicly avalilable data in order to answer to important biological questions. The first strategy studies the incorrect assignment of the first AUG codon in a messenger RNA (mRNA), due to the incomplete determination of its 5' end sequence. An extension of the mRNA 5' coding region was identified in 477 in human loci, out of all human known mRNAs analysed, using an automated expressed sequence tag (EST)-based approach. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 and the consequences for the functional studies are discussed. The second approach analyses the codon bias, the phenomenon in which distinct synonymous codons are used with different frequencies, and, following integration with a gene expression profile, estimates the total number of codons present across all the expressed mRNAs (named here "codonome value") in a given biological condition. Systematic analyses across different pathological and normal human tissues and multiple species shows a surprisingly tight correlation between the codon bias and the codonome bias. The third approach is useful to studies the expression of human autism spectrum disorder (ASD) implicated genes. ASD implicated genes sharing microRNA response elements (MREs) for the same microRNA are co-expressed in brain samples from healthy and ASD affected individuals. The different expression of a recently identified long non coding RNA which have four MREs for the same microRNA could disrupt the equilibrium in this network, but further analyses and experiments are needed.
Resumo:
Despite extensive research and introduction of innovative therapy, lung cancer prognosis remains poor, with a five years survival of only 17%. The success of pharmacological treatment is often impaired by drug resistance. Thus, the characterization of response mechanisms to anti-cancer compounds and of the molecular mechanisms supporting lung cancer aggressiveness are crucial for patient’s management. In the first part of this thesis, we characterized the molecular mechanism behind resistance of lung cancer cells to the Inhibitors of the Bromodomain and Extraterminal domain containing Proteins (BETi). Through a CRISPR/Cas9 screening we identified three Hippo Pathway members, LATS2, TAOK1 and NF2 as genes implicated in susceptibility to BETi. These genes confer sensitivity to BETi inhibiting TAZ activity. Conversely, TAZ overexpression increases resistance to BETi. We also displayed that BETi downregulate both YAP, TAZ and TEADs expression in several cancer cell lines, implying a novel BETi-dependent cytotoxic mechanism. In the second part of this work, we attempted to characterize the crosstalk between the TAZ gene and its cognate antisense long-non coding RNA (lncRNA) TAZ-AS202 in lung tumorigenesis. As for TAZ downregulation, TAZ-AS202 silencing impairs NSCLC cells proliferation, migration and invasion, suggesting a pro-tumorigenic function for this lncRNA during lung tumorigenesis. TAZ-AS202 regulates TAZ target genes without altering TAZ expression or localization. This finding implies an uncovered functional cooperation between TAZ and TAZ-AS202. Moreover, we found that the EPH-ephrin signaling receptor EPHB2 is a downstream effector affected by both TAZ and TAZ-AS202 silencing. EPHB2 downregulation significantly attenuates cells proliferation, migration and invasion, suggesting that, at least in part, TAZ-AS202 and TAZ pro-oncogenic activity depends on EPH-ephrin signaling final deregulation. Finally, we started to dissect the mechanism underlying the TAZ-AS202 regulatory activity on EPHB2 in lung cancer, which may involve the existence of an intermediate transcription factor and is the object of our ongoing research.
Resumo:
Recenti analisi sull’intero trascrittoma hanno rivelato una estensiva trascrizione di RNA non codificanti (ncRNA), le quali funzioni sono tuttavia in gran parte sconosciute. In questo lavoro è stato dimostrato che alte dosi di camptotecina (CPT), un farmaco antitumorale inibitore della Top1, aumentano la trascrizione di due ncRNA antisenso in 5’ e 3’ (5'aHIF-1α e 3'aHIF-1α rispettivamente) al locus genico di HIF-1α e diminuiscono i livelli dell’mRNA di HIF-1α stesso. Gli effetti del trattamento sono Top1-dipendenti, mentre non dipendono dal danno al DNA alla forca di replicazione o dai checkpoint attivati dal danno al DNA. I ncRNA vengono attivati in risposta a diversi tipi di stress, il 5'aHIF-1α è lungo circa 10 kb e possiede sia il CAP in 5’ sia poliadenilazione in 3’ (in letteratura è noto che il 3'aHIF-1α è un trascritto di 1,7 kb, senza 5’CAP né poliadenilazione). Analisi di localizzazione intracellulare hanno dimostrato che entrambi sono trascritti nucleari. In particolare 5'aHIF-1α co-localizza con proteine del complesso del poro nucleare, suggerendo un suo possibile ruolo come mediatore degli scambi della membrana nucleare. È stata dimostrata inoltre la trascrizione dei due ncRNA in tessuti di tumore umano del rene, evidenziandone possibili ruoli nello sviluppo del cancro. È anche noto in letteratura che basse dosi di CPT in condizioni di ipossia diminuiscono i livelli di proteina di HIF-1α. Dopo aver dimostrato su diverse linee cellulari che i due ncRNA sopracitati non potessero essere implicati in tale effetto, abbiamo studiato le variazioni dell’intero miRnoma alle nuove condizioni sperimentali. In tal modo abbiamo scoperto che il miR-X sembra essere il mediatore molecolare dell’abbattimento di HIF-1α dopo trattamento con basse dosi di CPT in ipossia. Complessivamente, questi risultati suggeriscono che il fattore di trascrizione HIF-1α venga finemente regolato da RNA non-codificanti indotti da danno al DNA.
Resumo:
The human DMD locus encodes dystrophin protein. Absence or reduced levels of dystrophin (DMD or BMD phenotype, respectively) lead to progressive muscle wasting. Little is known about the complex coordination of dystrophin expression and its transcriptional regulation is a field of intense interest. In this work we found that DMD locus harbours multiple long non coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. These lncRNAs are tissue-specific and highly expressed during myogenesis, suggesting a possible role in tissue-specific expression of DMD gene isoforms. Their forced ectopic expression in human muscle and neuronal cells leads to a specific and negative regulation of endogenous dystrophin full lenght isoforms. An intriguing aspect regarding the transcription of the DMD locus is the gene size (2.4Mb). The mechanism that ensures the complete synthesis of the primary transcript and the coordinated splicing of 79 exons is still completely unknown. By ChIP-on-chip analyses, we discovered novel regions never been involved before in the transcription regulation of the DMD locus. Specifically, we observed enrichments for Pol II, P-Ser2, P-Ser5, Ac-H3 and 2Me-H3K4 in an intronic region of 3Kb (approximately 21Kb) downstream of the end of DMD exon 52 and in a region of 4Kb spanning the DMD exon 62. Interestingly, this latter region and the TSS of Dp71 are strongly marked by 3Me-H3K36, an histone modification associated with the regulation of splicing process. Furthermore, we also observed strong presence of open chromatin marks (Ac-H3 and 2Me-H3K4) around intron 34 and the exon 45 without presence of RNA pol II. We speculate that these two regions may exert an enhancer-like function on Dp427m promoter, although further investigations are necessary. Finally, we investigated the nuclear-cytoplasmic compartmentalization of the muscular dystrophin mRNA and, specifically, we verified whether the exon skipping therapy could influence its cellular distribution.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
The two-metal-ion architecture is a structural feature found in a variety of RNA processing metalloenzymes or ribozymes (RNA-based enzymes), which control the biogenesis and the metabolism of vital RNAs, including non-coding RNAs (ncRNAs). Notably, such ncRNAs are emerging as key players for the regulation of cellular homeostasis, and their altered expression has been often linked to the development of severe human pathologies, from cancer to mental disorders. Accordingly, understanding the biological processing of ncRNAs is foundational for the development of novel therapeutic strategies and tools. Here, we use state-of the-art molecular simulations, complemented with X-ray crystallography and biochemical experiments, to characterize the RNA processing cycle as catalyzed by two two-metal-ion enzymes: the group II intron ribozymes and the RNase H1. We show that multiple and diverse cations are strategically recruited at and timely released from the enzymes’ active site during catalysis. Such a controlled cations’ trafficking leads to the recursive formation and disruption of an extended two-metal ion architecture that is functional for RNA-hydrolysis – from substrate recruitment to product release. Importantly, we found that these cations’ binding sites are conserved among other RNA-processing machineries, including the human spliceosome and CRISPR-Cas systems, suggesting that an evolutionarily-converged catalytic strategy is adopted by these enzymes to process RNA molecules. Thus, our findings corroborate and sensibly extend the current knowledge of two-metal-ion enzymes, and support the design of novel drugs targeting RNA-processing metalloenzymes or ribozymes as well as the rational engineering of novel programmable gene-therapy tools.
Resumo:
Malignant Pleural Mesothelioma (MPM) is a very aggressive cancer whose incidence is growing worldwide. MPM escapes the classical models of carcinogenesis and lacks a distinctive genetic fingerprint, keeping obscure the molecular events that lead to tumorigenesis. This severely impacts on the limited therapeutic options and on the lack of specific biomarkers, concurring to make MPM one of the deadliest cancers. Here we combined a functional genome-wide loss of function CRISPR/Cas9 screening with patients’ transcriptomic and clinical data, to identify genes essential for MPM progression. Besides, we explored the role of non-coding RNAs to MPM progression by analysing gene expression profiles and clinical data from the MESO-TCGA dataset. We identified TRIM28 and the lncRNA LINC00941 as new vulnerabilities of MPM, associated with disease aggressiveness and bad outcome of patients. TRIM28 is a multi-domain protein involved in many processes, including transcription regulation. We showed that TRIM28 silencing impairs MPM cells’ growth and clonogenicity by blocking cells in mitosis. RNA-seq profiling showed that TRIM28 loss abolished the expression of major mitotic players. Our data suggest that TRIM28 is part of the B-MYB/FOXM1-MuvB complex that specifically drives the activation of mitotic genes, keeping the time of mitosis. In parallel, we found LINC00941 as strongly associated with reduced survival probability in MPM patients. LINC00941 KD profoundly reduced MPM cells’ growth, migration and invasion. This is accompanied by changes in morphology, cytoskeleton organization and cell-cell adhesion properties. RNA-seq profiling showed that LINC00941 KD impacts crucial functions of MPM, including HIF1α signalling. Collectively these data provided new insights into MPM biology and demonstrated that the integration of functional screening with patients’ clinical data is a powerful tool to highlight new non-genetic cancer dependencies that associate to a bad outcome in vivo, paving the way to new MPM-oriented targeted strategies and prognostic tools to improve patients risk-based stratification.
Resumo:
Bacterial small regulatory RNAs (sRNAs) are posttranscriptional regulators involved in stress responses. These short non-coding transcripts are synthesised in response to a signal, and control gene expression of their regulons by modulating the translation or stability of the target mRNAs, often in concert with the RNA chaperone Hfq. Characterization of a Hfq knock out mutant in Neisseria meningitidis revealed that it has a pleiotropic phenotype, suggesting a major role for Hfq in adaptation to stresses and virulence and the presence of Hfq-dependent sRNA activity. Global gene expression analysis of regulated transcripts in the Hfq mutant revealed the presence of a regulated sRNA, incorrectly annotated as an open reading frame, which we renamed AniS. The synthesis of this novel sRNA is anaerobically induced through activation of its promoter by the FNR global regulator and through global gene expression analyses we identified at least two predicted mRNA targets of AniS. We also performed a detailed molecular analysis of the action of the sRNA NrrF,. We demonstrated that NrrF regulates succinate dehydrogenase by forming a duplex with a region of complementarity within the sdhDA region of the succinate dehydrogenase transcript, and Hfq enhances the binding of this sRNA to the identified target in the sdhCDAB mRNA; this is likely to result in rapid turnover of the transcript in vivo. In addition, in order to globally investigate other possible sRNAs of N. meningitdis we Deep-sequenced the transcriptome of this bacterium under both standard in vitro and iron-depleted conditions. This analysis revealed genes that were actively transcribed under the two conditions. We focused our attention on the transcribed non-coding regions of the genome and, along with 5’ and 3’ untranslated regions, 19 novel candidate sRNAs were identified. Further studies will be focused on the identification of the regulatory networks of these sRNAs, and their targets.
Resumo:
Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.
Resumo:
The objective of this work is to characterize the genome of the chromosome 1 of A.thaliana, a small flowering plants used as a model organism in studies of biology and genetics, on the basis of a recent mathematical model of the genetic code. I analyze and compare different portions of the genome: genes, exons, coding sequences (CDS), introns, long introns, intergenes, untranslated regions (UTR) and regulatory sequences. In order to accomplish the task, I transformed nucleotide sequences into binary sequences based on the definition of the three different dichotomic classes. The descriptive analysis of binary strings indicate the presence of regularities in each portion of the genome considered. In particular, there are remarkable differences between coding sequences (CDS and exons) and non-coding sequences, suggesting that the frame is important only for coding sequences and that dichotomic classes can be useful to recognize them. Then, I assessed the existence of short-range dependence between binary sequences computed on the basis of the different dichotomic classes. I used three different measures of dependence: the well-known chi-squared test and two indices derived from the concept of entropy i.e. Mutual Information (MI) and Sρ, a normalized version of the “Bhattacharya Hellinger Matusita distance”. The results show that there is a significant short-range dependence structure only for the coding sequences whose existence is a clue of an underlying error detection and correction mechanism. No doubt, further studies are needed in order to assess how the information carried by dichotomic classes could discriminate between coding and noncoding sequence and, therefore, contribute to unveil the role of the mathematical structure in error detection and correction mechanisms. Still, I have shown the potential of the approach presented for understanding the management of genetic information.
Resumo:
I microRNA sono una classe di piccole molecole di RNA non codificante che controllano la stabilità di numerosi RNA messaggeri, perciò sono considerati come “master regulator” dell’espressione genica. Ogni tumore è caratterizzato da un profilo di espressione alterato dei microRNA. Il miR-101 è un oncosoppressore represso nei tessuti tumorali ed è candidato come biomarcatore del cancro colon-rettale. È regolato da numerosi eventi fisiologici e patologici, come angiogenesi e carcinogenesi. Gli eventi molecolari coinvolti nella regolazione dell’espressione del miR-101 sono scarsamente conosciuti, poiché è trascritto da due loci genici non caratterizzati. L’obiettivo di questo lavoro è di caratterizzare i geni del miR-101 ed individuarne i regolatori molecolari coinvolti nella cancerogenesi colon-rettale.
Resumo:
Neisseria meningitidis, the leading cause of bacterial meningitis, can adapt to different host niches during human infection. Both transcriptional and post-transcriptional regulatory networks have been identified as playing a crucial role for bacterial stress responses and virulence. We investigated the N. meningitidis transcriptional landscape both by microarray and by RNA sequencing (RNAseq). Microarray analysis of N. meningitidis grown in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. In particular, we identified a glucose-responsive hexR-like transcriptional regulator in N. meningitidis. Deletion analysis showed that the hexR gene is accountable for a subset of the glucose-responsive regulation, and in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of meningococcus, by targeting a DNA region overlapping putative regulatory sequences. Our results indicate that HexR coordinates the central metabolism of meningococcus in response to the availability of glucose, and N. meningitidis strains lacking the hexR gene are also deficient in establishing successful bacteremia in a mouse model of infection. In parallel, RNAseq analysis of N. meningitidis cultured under standard or iron-limiting in vitro growth conditions allowed us to identify novel small non-coding RNAs (sRNAs) potentially involved in N. meningitidis regulatory networks. Manual curation of the RNAseq data generated a list of 51 sRNAs, 8 of which were validated by Northern blotting. Deletion of selected sRNAs caused attenuation of N. meningitidis infection in a murine model, leading to the identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, we describe the identification and initial characterization of a novel sRNA unique to meningococcus, closely associated to genes relevant for the intracellular survival of pathogenic Neisseriae. Taken together, our findings could help unravel the regulation of N. meningitidis adaptation to the host environment and its implications for pathogenesis.