8 resultados para Logic-based optimization algorithm
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
The advent of distributed and heterogeneous systems has laid the foundation for the birth of new architectural paradigms, in which many separated and autonomous entities collaborate and interact to the aim of achieving complex strategic goals, impossible to be accomplished on their own. A non exhaustive list of systems targeted by such paradigms includes Business Process Management, Clinical Guidelines and Careflow Protocols, Service-Oriented and Multi-Agent Systems. It is largely recognized that engineering these systems requires novel modeling techniques. In particular, many authors are claiming that an open, declarative perspective is needed to complement the closed, procedural nature of the state of the art specification languages. For example, the ConDec language has been recently proposed to target the declarative and open specification of Business Processes, overcoming the over-specification and over-constraining issues of classical procedural approaches. On the one hand, the success of such novel modeling languages strongly depends on their usability by non-IT savvy: they must provide an appealing, intuitive graphical front-end. On the other hand, they must be prone to verification, in order to guarantee the trustworthiness and reliability of the developed model, as well as to ensure that the actual executions of the system effectively comply with it. In this dissertation, we claim that Computational Logic is a suitable framework for dealing with the specification, verification, execution, monitoring and analysis of these systems. We propose to adopt an extended version of the ConDec language for specifying interaction models with a declarative, open flavor. We show how all the (extended) ConDec constructs can be automatically translated to the CLIMB Computational Logic-based language, and illustrate how its corresponding reasoning techniques can be successfully exploited to provide support and verification capabilities along the whole life cycle of the targeted systems.
Resumo:
Many combinatorial problems coming from the real world may not have a clear and well defined structure, typically being dirtied by side constraints, or being composed of two or more sub-problems, usually not disjoint. Such problems are not suitable to be solved with pure approaches based on a single programming paradigm, because a paradigm that can effectively face a problem characteristic may behave inefficiently when facing other characteristics. In these cases, modelling the problem using different programming techniques, trying to ”take the best” from each technique, can produce solvers that largely dominate pure approaches. We demonstrate the effectiveness of hybridization and we discuss about different hybridization techniques by analyzing two classes of problems with particular structures, exploiting Constraint Programming and Integer Linear Programming solving tools and Algorithm Portfolios and Logic Based Benders Decomposition as integration and hybridization frameworks.
Resumo:
The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
The elusive fiction of J. M. Coetzee is not a work in which you can read fixed ethical stances. I suggest testing the potentialities of a logic based on frames and double binds in Coetzee's novels. A double bind is a dilemma in communication which consists on tho conflicting messages, with the result that you canât successfully respond to neither. Jacques Derrida highlighted the strategic value of a way of thinking based on the double bind (but on frames as well), which enables to escape binary thinking and so it opens an ethical space, where you can make a choice out of a set of fixed rules and take responsibility for it. In Coetzeeâs fiction the author himself can be considered in a double bind, seeing that he is a white South African writer who feels that his âtaskâ canât be as simply as choosing to represent faithfully the violence and the racism of the apartheid or of choosing to give a voice to the oppressed. Good intentions alone do not ensure protection against entering unwittingly into complicity with the dominant discourse, and this is why is important to make the frame in which one is always situated clearly visible and explicit. The logic of the double bind becomes the way in which moral problem are staged in Coetzeeâs fiction as well: the opportunity to give a voice to the oppressed through the same language which co-opted to serve the cause of oppression, a relation with the otherness never completed, or the representability of evil in literature, of the secret and of the paradoxical implications of confession and forgiveness.
Resumo:
We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.
Resumo:
Among the scientific objectives addressed by the Radio Science Experiment hosted on board the ESA mission BepiColombo is the retrieval of the rotational state of planet Mercury. In fact, the estimation of the obliquity and the librations amplitude were proven to be fundamental for constraining the interior composition of Mercury. This is accomplished by the Mercury Orbiter Radio science Experiment (MORE) via a strict interaction among different payloads thus making the experiment particularly challenging. The underlying idea consists in capturing images of the same landmark on the surface of the planet in different epochs in order to observe a displacement of the identified features with respect to a nominal rotation which allows to estimate the rotational parameters. Observations must be planned accurately in order to obtain image pairs carrying the highest information content for the following estimation process. This is not a trivial task especially in light of the several dynamical constraints involved. Another delicate issue is represented by the pattern matching process between image pairs for which the lowest correlation errors are desired. The research activity was conducted in the frame of the MORE rotation experiment and addressed the design and implementation of an end-to-end simulator of the experiment with the final objective of establishing an optimal science planning of the observations. In the thesis, the implementation of the singular modules forming the simulator is illustrated along with the simulations performed. The results obtained from the preliminary release of the optimization algorithm are finally presented although the software implemented is only at a preliminary release and will be improved and refined in the future also taking into account the developments of the mission.