5 resultados para Introduced organisms -- Catalonia

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of exotic species is one of the most important threats to biodiversity.This phenomenon may cause economic and environmental damage. To prevent these invasions there are institutions like EPPO. Nevertheless, the introduction of exotic pests is an increasing issue, difficult to control. Classic biological control, based on importation of natural enemies from the country of origin, has been successfully used for over 120 years, but it has also raised some criticism. My research work has focused on the study of the new associations occurring between indigenous parasitoids and three exotic pests introduced in Italy and Europe. The three target insects considered were: Cacyreus marshalli Butler (Lepidoptera: Lycaenidae), a pest of Geranium plants; Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), a plague of Castanea sp. and Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). This ladybug has been introduced as a biological control agent, but since some years it considered as an invasive species. For C. marshalli I performed laboratory tests on acceptance and suitability of immature stages of this butterfly by Exorista larvarum (Diptera: Tachinidae) and Brachymeria tibialis (Hymenoptera: Chalcidicae). The experiments showed that these two parasitoids could be used to contain this pest. For D. kuriphilus I performed field samplings in an infested chestnut area, the samples were maintained in rearing chamber until gall wasp or parasitoids emergence. In the 3-year research many parasitoids of gall wasps were found; one of these, Torymus flavipes (Walker), was found in large number. For H. axyridis the research work included a first phase of field sampling, during which I searched indigenous parasitoids which had adapted to this new host; the only species found was Dinocampus coccinellae (Schrank) (Hymenoptera: Braconidae). Laboratory tests were performed on the wasp rearing, biology and capacity to contain H. axyridis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this theses is to contribute to the wide discussion about the biological control level on the biomineralization operated by calcifying organisms. In particular the intra-crystalline organic matrix associated with different coral species was studied and its role in the process was investigated. The main goals obtained from the research on corals included: (i) the discovery of the species specific role of the intra-crystalline organic matrix molecules in the precipitation of calcium carbonate; (ii) the definition of the role of magnesium ions in the control of the macromolecules assembly/aggregation and in the consequent calcium carbonate polymorphic selectivity; (iii) the discovery that in corals the biomineralization process is not affected by the sea water acidity, as consequence corals are able to construct their skeletons independently from the environmental conditions as far they survive. At the same time, investigations on different kind of vaterite, biogenic and synthetic, were also carried out and confirm the importance of the organism control on the biomineralization process and in particular on the co-existence of different crystalline structures of vaterite for enabling optimization of specific functions, through the employment of OM and acidic macromolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins, the most essential biological macromolecules, are involved in nearly every aspect of life. The elucidation of their three-dimensional structures through X-ray analysis has significantly contributed to our understanding of fundamental mechanisms in life processes. However, the obstacle of obtaining high-resolution protein crystals remains significant. Thus, searching for materials that can effectively induce nucleation of crystals is a promising and active field. This thesis work characterizes and prepares albumin nanoparticles as heterogeneous nucleants for protein crystallization. These stable Bovine Serum Albumin nanoparticles were synthesized via the desolvation method, purified efficiently, and characterized in terms of dimension, morphology, and secondary structure. The ability of BSA-NPs to induce macromolecule nucleation was tested on three model proteins, exhibiting significant results, with larger NPs inducing more nucleation. The second part of this work focuses on the structural study, mainly through X-ray crystallography, of five chloroplast and cytosolic enzymes involved in the fundamental cellular processes of two photosynthetic organisms, Chlamydomonas reinhardtii and Arabidopsis thaliana. The structures of three enzymes involved in the Calvin-Benson-Bassham Cycle, phosphoribulokinase, troseposphatisomerase, and ribulosiophosphate epimerase from Chlamydomonas reinhardtii, were solved to investigate their catalytic and regulatory mechanisms. Additionally, the structure of nitrosylated-CrTPI made it possible to identify Cys14 as a target for nitrosylation, and the crystallographic structure of CrRPE was solved for the first time, providing insights into its catalytic and regulatory properties. Finally, the structure of S-nitrosoglutathione reductase, AtGSNOR, was compared with that of AtADH1, revealing differences in their catalytic sites. Overall, seven crystallographic structures, including partially oxidized CrPRK, CrPRK/ATP, CrPRK/ADP/Ru5P, CrTPI-nitrosylated, apo-CrRPE, apo-AtGSNOR, and AtADH1-NADH, were solved and are yet to be deposited in the PDB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal ecosystems represent an inestimable source of biodiversity, being among the most productive areas on the planet. Despite the great ecological and economic value of those environments, many threats endanger the species living in this ecosystem, like the rapid warming and the sea acidification, among many other. Benthic calcifying organisms (e.g. mollusks, corals and echinoderms) in particular, are among the most exposed to those hazards. These organisms use calcium carbonate as a structural and protective material through the biomineralization process, biologically controlled by the organism, but nevertheless, strongly influenced by the environmental surroundings. Evaluating how a changing environment can influence the process of biomineralization is critical to understand how those species of great ecological and economic importance will face the ongoing climate change. This thesis investigates the mechanism of biomineralization in different mollusks’ species of the Adriatic Sea, providing detailed descriptions of shells skeletal, biometric and growth parameters. Applying a multidisciplinary and multi-scale research approach, the influence of external environmental factors on the process of shell formation has been investigated. To achieve this purpose analysis were conducted both on current populations and on fossil remain, which allows to investigate ecological responses to past climate transitions. Mollusks’ shells in fact are one of the best tools to understand climate change in the past, present and future, since they record the environmental conditions prevailed during their life, reflected on the geochemical properties, microstructure and growth of the shell. This approach allowed to overcome the time scale limit imposed by field and laboratory survey, and better understand species long term adaptive response to changing environment, a crucial issue to define proper conservation and management strategies. Furthermore, the investigation of fossil record of mollusks assemblages offered the opportunity to evaluate the long-term biotic response to anthropogenic stressors in the north Adriatic Sea.