6 resultados para Implicit finite difference approximation scheme

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work carried out in this thesis aims at: - studying – in both simulative and experimental methods – the effect of electrical transients (i.e., Voltage Polarity Reversals VPRs, Temporary OverVoltages TOVs, and Superimposed Switching Impulses SSIs) on the aging phenomena in HVDC extruded cable insulations. Dielectric spectroscopy, conductivity measurements, Fourier Transform Infra-Red FTIR spectroscopy, and space charge measurements show variation in the insulating properties of the aged Cross-Linked Polyethylene XLPE specimens compared to non-aged ones. Scission in XLPE bonds and formation of aging chemical bonds is also noticed in aged insulations due to possible oxidation reactions. The aged materials show more ability to accumulate space charges compared to non-aged ones. An increase in both DC electrical conductivity and imaginary permittivity has been also noticed. - The development of life-based geometric design of HVDC cables in a detailed parametric analysis of all parameters that affect the design. Furthermore, the effect of both electrical and thermal transients on the design is also investigated. - The intrinsic thermal instability in HVDC cables and the effect of insulation characteristics on the thermal stability using a temperature and field iterative loop (using numerical methods – Finite Difference Method FDM). The dielectric loss coefficient is also calculated for DC cables and found to be less than that in AC cables. This emphasizes that the intrinsic thermal instability is critical in HVDC cables. - Fitting electrical conductivity models to the experimental measurements using both models found in the literature and modified models to find the best fit by considering the synergistic effect between field and temperature coefficients of electrical conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Many-Body-Perturbation Theory approach is among the most successful theoretical frameworks for the study of excited state properties. It allows to describe the excitonic interactions, which play a fundamental role in the optical response of insulators and semiconductors. The first part of the thesis focuses on the study of the quasiparticle, optical and excitonic properties of \textit{bulk} Transition Metal Oxide (TMO) perovskites using a G$_0$W$_0$+Bethe Salpeter Equation (BSE) approach. A representative set of 14 compounds has been selected, including 3d, 4d and 5d perovskites. An approximation of the BSE scheme, based on an analytic diagonal expression for the inverse dielectric function, is used to compute the exciton binding energies and is carefully bench-marked against the standard BSE results. In 2019 an important breakthrough has been achieved with the synthesis of ultrathin SrTiO3 films down to the monolayer limit. This allows us to explore how the quasiparticle and optical properties of SrTiO3 evolve from the bulk to the two-dimensional limit. The electronic structure is computed with G0W0 approach: we prove that the inclusion of the off-diagonal self-energy terms is required to avoid non-physical band dispersions. The excitonic properties are investigated beyond the optical limit at finite momenta. Lastly a study of the under pressure optical response of the topological nodal line semimetal ZrSiS is presented, in conjunction with the experimental results from the group of Prof. Dr. Kuntscher of the Augsburg University. The second part of the thesis discusses the implementation of a workflow to automate G$_0$W$_0$ and BSE calculations with the VASP software. The workflow adopts a convergence scheme based on an explicit basis-extrapolation approach [J. Klimeš \textit{et al.}, Phys. Rev.B 90, 075125 (2014)] which allows to reduce the number of intermediate calculations required to reach convergence and to explicit estimate the error associated to the basis-set truncation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present manuscript focuses on Lattice Gauge Theories based on finite groups. For the purpose of Quantum Simulation, the Hamiltonian approach is considered, while the finite group serves as a discretization scheme for the degrees of freedom of the gauge fields. Several aspects of these models are studied. First, we investigate dualities in Abelian models with a restricted geometry, using a systematic approach. This leads to a rich phase diagram dependent on the super-selection sectors. Second, we construct a family of lattice Hamiltonians for gauge theories with a finite group, either Abelian or non-Abelian. We show that is possible to express the electric term as a natural graph Laplacian, and that the physical Hilbert space can be explicitly built using spin network states. In both cases we perform numerical simulations in order to establish the correctness of the theoretical results and further investigate the models.