3 resultados para ION-IMPLANTATION

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growing interest for Integrated Optics for sensing, telecommunications and even electronics is driving research to find solutions to the new challenges issued by a more and more fast, connected and smart world. This thesis deals with the design, the fabrication and the characterisation of the first prototypes of Microring Resonators realised using ion implanted Lithium Niobate (LiNbO3) ridge waveguides. Optical Resonator is one among the most important devices for all tasks described above. LiNbO3 is the substrate commonly used to fabricate optical modulators thanks to its electro-optic characteristics. Since it is produced in high quantity, good quality and large wafers its price is low compared to other electro-optic substrate. We propose to use ion implantation as fabrication technology because in the other way standard optical waveguides realised in LiNbO3 by Proton Exchange (PE) or metal diffusion do not allow small bending radii, which are necessary to keep the circuit footprint small. We will show in fact that this approach allows to fabricate waveguides on Lithium Niobate that are better than PE or metal diffused waveguides as it allows smaller size devices and tailoring of the refractive index profile controlling the implantation parameters. Moreover, we will show that the ridge technology based on enhanced etching rate via ion implantation produces a waveguide with roughness lower than a dry etched one. Finally it has been assessed a complete technological process for fabrication of Microring Resonator devices in Lithium Niobate by ion implantation and the first prototypes have been produced.