10 resultados para IGBTs in parallel

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The repressor element 1-silencing transcription factor (REST) was first identified as a protein that binds to a 21-bp DNA sequence element (known as repressor element 1 (RE1)) resulting in transcriptional repression of the neural-specific genes [Chong et al., 1995; Schoenherr and Anderson, 1995]. The original proposed role for REST was that of a factor responsible for restricting neuronal gene expression to the nervous system by silencing expression of these genes in non-neuronal cells. Although it was initially thought to repress neuronal genes in non-neuronal cells, the role of REST is complex and tissue dependent. In this study I investigated any role played by REST in the induction and patterning of differentiation of SH-SY5Y human neuroblastoma cells exposed to IGF-I. and phorbol 12- myristate 13-acetate (PMA) To down-regulate REST expression we developed an antisense (AS) strategy based on the use of phosphorothioate oligonucleotides (ODNs). In order to evaluate REST mRNA levels, we developed a real-time PCR technique and REST protein levels were evaluated by western blotting. Results showed that nuclear REST is increased in SH-SY5Y neuroblastoma cells cultured in SFM and exposed to IGF-I for 2-days and it then declines in 5-day-treated cells concomitant with a progressive neurite extension. Also the phorbol ester PMA was able to increase nuclear REST levels after 3-days treatment concomitant to neuronal differentiation of neuroblastoma cells, whereas, at later stages, it is down-regulated. Supporting these data, the exposure to PKC inhibitors (GF10923X and Gö6976) and PMA (16nM) reverted the effects observed with PMA alone. REST levels were related to morphological differentiation, expression of growth coneassociated protein 43 (GAP-43; a gene not regulated by REST) and of synapsin I and βIII tubulin (genes regulated by REST), proteins involved in the early stage of neuronal development. We observed that differentiation of SH-SY5Y cells by IGF-I and PMA was accompanied by a significant increase of these neuronal markers, an effect that was concomitant with REST decrease. In order to relate the decreased REST expression with a progressive neurite extension, I investigated any possible involvement of the ubiquitin–proteasome system (UPS), a multienzymatic pathway which degrades polyubiquinated soluble cytoplasmic proteins [Pickart and Cohen, 2004]. For this purpose, SH-SY5Y cells are concomitantly exposed to PMA and the proteasome inhibitor MG132. In SH-SY5Y exposed to PMA and MG 132, we observed an inverse pattern of expression of synapsin I and β- tubulin III, two neuronal differentiation markers regulated by REST. Their cytoplasmic levels are reduced when compared to cells exposed to PMA alone, as a consequence of the increase of REST expression by proteasome inhibitor. The majority of proteasome substrates identified to date are marked for degradation by polyubiquitinylation; however, exceptions to this principle, are well documented [Hoyt and Coffino, 2004]. Interestingly, REST degradation seems to be completely ubiquitin-independent. The expression pattern of REST could be consistent with the theory that, during early neuronal differentiation induced by IGF-I and PKC, it may help to repress the expression of several genes not yet required by the differentiation program and then it declines later. Interestingly, the observation that REST expression is progressively reduced in parallel with cell proliferation seems to indicate that the role of this transcription factor could also be related to cell survival or to counteract apotosis events [Lawinger et al., 2000] although, as shown by AS-ODN experiments, it does not seem to be directly involved in cell proliferation. Therefore, the decline of REST expression is a comparatively later event during maturation of neuroroblasts in vitro. Thus, we propose that REST is regulated by growth factors, like IGF-I, and PKC activators in a time-dependent manner: it is elevated during early steps of neural induction and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes, concomitantly with a progressive neurite extension. This later decline is regulated by the proteasome system activation in an ubiquitin-indipendent way and adds more evidences to the hypothesis that REST down-regulation contributes to differentiation and arrest of proliferation of neuroblastoma cells. Finally, the glycosylation pattern of the REST protein was analysed, moving from the observation that the molecular weight calculated on REST sequence is about 116 kDa but using western blotting this transcription factor appears to have distinct apparent molecular weight (see Table 1.1): this difference could be explained by post-translational modifications of the proteins, like glycosylation. In fact recently, several studies underlined the importance of O-glycosylation in modulating transcriptional silencing, protein phosphorylation, protein degradation by proteasome and protein–protein interactions [Julenius et al., 2005; Zachara and Hart, 2006]. Deglycosilating analysis showed that REST protein in SH-SY5Y and HEK293 cells is Oglycosylated and not N-glycosylated. Moreover, using several combination of deglycosilating enzymes it is possible to hypothesize the presence of Gal-β(1-3)-GalNAc residues on the endogenous REST, while β(1-4)-linked galactose residues may be present on recombinant REST protein expressed in HEK293 cells. However, the O-glycosylation process produces an immense multiplicity of chemical structures and monosaccharides must be sequentially hydrolyzed by a series of exoglycosidase. Further experiments are needed to characterize all the post-translational modification of the transcription factor REST.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Being able to positively interact and build relationships with playmates in preschool years is crucial to achieve positive adjustment. An update review and two studies on such topics were provided. Study 1 is observational; it investigates the type of social experience in groups (N = 443) of children (N = 120) at preschool age in child-led vs. teacher-led contexts. The results revealed that in child-led contexts children were more likely to be alone, in dyads, and in small peer groups; groups were mostly characterized by same-gender playmates who engaged in joint interactions, with few social interactions with teachers. In teacher-led contexts, on the other hand, children were more likely to be involved in small, medium and large groups; groups were mostly characterized by other-gender playmates, involved in parallel interactions, with teachers playing a more active role. The purpose of Study 2 was to describe the development of socio-emotional competence, temperamental traits and linguistic skill. It examined the role of children’s reciprocated nominations (=RNs) with peers, assessed via sociometric interview, in relation to socio-emotional competence, temperamental traits and linguistic skill. Finally, the similarity-homophily tendency was investigated. Socio-emotional competence and temperamental traits were assessed via teacher ratings, linguistic skill via test administration. Eighty-four preschool children (M age = 62.53) were recruited within 4 preschool settings. Those children were quite representative of preschool population. The results revealed that children with higher RNs showed higher social competence (tendency), social orientation, positive emotionality, motor activity and linguistic skill. They exhibited lower anxiety-withdrawal. The results also showed that children prefer playmates with similar features: social competence, anger-aggression (tendency), social orientation, positive emotionality, inhibition to innovation, attention, motor activity (tendency) and linguistic skill. Implications for future research were suggested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foods that provide medical and health benefits or have a role in disease risk prevention are termed functional foods. The functionality of functional foods is derived from bioactive compounds that are extranutritional constituents present in small quantities in food. Bioactive components include a range of chemical compounds with varying structures such as carotenoids, flavonoids, plant sterols, omega-3 fatty acids (n-3), allyl and diallyl sulfides, indoles (benzopyrroles), and phenolic acids. The increasing consumer interest in natural bioactive compounds has brought about a rise in demand for these kinds of compounds and, in parallel, an increasing number of scientific studies have this type of substance as main topic. The principal aim of this PhD research project was the study of different bioactive and toxic compounds in several natural matrices. To achieve this goal, chromatographic, spectroscopic and sensorial analysis were performed. This manuscript reports the main results obtained in the six activities briefly summarized as follows: • SECTION I: the influence of conventional packaging on lipid oxidation of pasta was evaluated in egg spaghetti. • SECTION II: the effect of the storage at different temperatures of virgin olive oil was monitored by peroxide value, fatty acid activity, OSI test and sensory analysis. • SECTION III: the glucosinolate and phenolic content of 37 rocket salad accessions were evaluated, comparing Eruca sativa and Diplotaxis tenuifolia species. Sensory analysis and the influence of the phenolic and glucosinolate composition on sensory attributes of rocket salads has been also studied. • SECTION IV: ten buckwheat honeys were characterised on the basis of their pollen, physicochemical, phenolic and volatile composition. • SECTION V: the polyphenolic fraction, anthocyanins and other polar compounds, the antioxidant capacity and the anty-hyperlipemic action of the aqueous extract of Hibiscus sabdariffa were achieved. • SECTION VI: the optimization of a normal phase high pressure liquid chromatography–fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa powder and chocolate samples was performed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A design can be defined as context-sensitive when it achieves effective technical and functional transportation solutions, while preserving and enhancing natural environments and minimizing impacts on local communities. Traffic noise is one of the most critical environmental impacts of transportation infrastructure and it affects both humans and ecosystems. Tire/pavement noise is caused by a set of interactions at the contact patch and it is the predominant source of road noise at the regular traffic speeds. Wearing course characteristics affect tire/pavement noise through various mechanisms. Furthermore, acoustic performance of road pavements varies over time and it is influenced by both aging and temperature. Three experimentations have been carried out to evaluate wearing course characteristics effects on tire/pavement noise. The first study involves the evaluation of skid resistance, surface texture and tire/pavement noise of an innovative application of multipurpose cold-laid microsurfacing. The second one involves the evaluation of the surface and acoustic characteristics of the different pavement sections of the test track of the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo. In the third study, a set of highway sections have been selected in Southern Ontario with various types of pavements. Noise measurements were carried out by means of the Statistical Pass-by (SPB) method in the first case study, whereas in the second and in the third one, Close-proximity (CPX) and the On-Board Sound Intensity (OBSI) methods have been performed in parallel. Test results have contributed to understand the effects of pavement materials, temperature and aging on tire/pavement noise. Negligible correlation was found between surface texture and roughness with noise. As a general trend, aged and stiffer materials have shown to provide higher noise levels than newer and less stiff ones. Noise levels were also observed to be higher with temperature increase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Top1-DNA cleavage complexes (Top1ccs) trigger an accumulation of antisense RNAPII transcripts specifically at active divergent CpG-island promoters in a replication independent and Top1 dependent manner, leading to transcription-dependent genome instability and altered transcription regulation. Using different cancer cell lines of colon and osteo origins, we show that they display different sensitivity to CPT and G4 binder that is independent from Top1 level. To look at the interactions between Top1 and G4, we show that co-treatment with G4 binders potentiate the cell cytotoxicity of CPT regardless of the treatment sequences. Potentiation is indicated by a reduced inhibition concentration (IC50) with a more profound cytotoxicity in CPT-resistant cell lines, HCT15 and U2OS, hence, indicating an interaction between Top1inhibitor and G4 binders. Moreover, computational analysis confirmed the present of G4 motifs in genes with CPT-induced antisense transcription. G4 motifs are present mostly 5000 bp upstream from transcription start site and notably lower in genes. Comparisons between genes with no antisense transcription and genes with antisense transcription show that G4 motifs in this region are notably lower in the genes with antisense transcripts. Since CPT increases negative supercoils at promoters of intermediate activity, the formation of G4 is also increased in CPT-treated cells. Suprisingly, formation of G4 is regulated in parallel to the transient stabilization of R-loops, indicating a role in response to CPT-induced stress. G4 formation is highly elevated in Pyridostatin treated cells, which previous study shows increased formation of γH2Ax foci. This effect is also seen in the CPT-resistant cell lines, HCT15, indicating that the formation is a general event in response to CPT. We also show that R-loop formation is greatly increased in Pyridostatin treated cells. In order to study the role of R-loops and G4 structures in Top1cc-dependant repair pathway, we inhibited tyrosyl-phosphodiestrase 1 (TDP-1) using a TDP-1 inhibitor.