10 resultados para Fuel Oils
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Questo lavoro di tesi è stato suddiviso in tre parti. L’argomento principale è stato lo “Studio della componente antiossidante di oli ottenuti da olive mediante l’utilizzo di diversi sistemi e parametri tecnologici”. E’ ben noto come la qualità ossidativa di un olio di oliva dipenda oltre che dalla sua composizione in acidi grassi, dalla presenza di composti caratterizzati da un elevata attività antiossidante, ovvero le sostanze fenoliche. I composti fenolici contribuiscono quindi in maniera preponderante alla shelf life dell’olio extravergine di oliva. Inoltre sono state riscontrate delle forti correlazione tra alcune di queste sostanze e gli attributi sensoriali positivi di amaro e piccante. E’ poi da sottolineare come il potere antiossidante dei composti fenolici degli oli vergini di oliva, sia stato negli ultimi anni oggetto di considerevole interesse, poiché correlato alla protezione da alcune patologie come ad esempio quelle vascolari, degenerative e tumorali. Il contenuto delle sostanze fenoliche negli oli di oliva dipende da diversi fattori: cultivar, metodo di coltivazione, grado di maturazione delle olive e ovviamente dalle operazioni tecnologiche poiché possono variare il quantitativo di questi composti estratto. Alla luce di quanto appena detto abbiamo valutato l’influenza dei fattori agronomici (metodi di agricoltura biologica, integrata e convenzionale) e tecnologici (riduzione della temperatura della materia prima, aggiunta di coadiuvanti in fase di frangitura e di gramolatura, confronto tra tre oli extravergini di oliva ottenuti mediante diversi sistemi tecnologici) sul contenuto in composti fenolici di oli edibili ottenuti da olive (paper 1-3-4). Oltre alle sostanze fenoliche, negli oli di oliva sono presenti altri composti caratterizzati da proprietà chimiche e nutrizionali, tra questi vi sono i fitosteroli, ovvero gli steroli tipici del mondo vegetale, che rappresentano la frazione dell’insaponificabile quantitativamente più importante dopo gli idrocarburi. La composizione quali-quantitativa degli steroli di un olio di oliva è una delle caratteristiche analitiche più importanti nella valutazione della sua genuinità; infatti la frazione sterolica è significativamente diversa in funzione dell’origine botanica e perciò viene utilizzata per distinguere tra di loro gli oli e le loro miscele. Il principale sterolo nell’olio di oliva è il β- sitosterolo, la presenza di questo composto in quantità inferiore al 90% è un indice approssimativo dell’aggiunta di un qualsiasi altro olio. Il β-sitosterolo è una sostanza importante dal punto di vista della salute, poiché si oppone all’assorbimento del colesterolo. Mentre in letteratura si trovano numerosi lavori relativi al potere antiossidante di una serie di composti presenti nell’olio vergine di oliva (i già citati polifenoli, ma anche carotenoidi e tocoferoli) e ricerche che dimostrano invece come altri composti possano promuovere l’ossidazione dei lipidi, per quanto riguarda il potere antiossidante degli steroli e dei 4- metilsteroli, vi sono ancora poche informazioni. Per questo è stata da noi valutata la composizione sterolica in oli extravergini di oliva ottenuti con diverse tecnologie di estrazione e l’influenza di questa sostanza sulla loro stabilità ossidativa (paper 2). E’ stato recentemente riportato in letteratura come lipidi cellulari evidenziati attraverso la spettroscopia di risonanza nucleare magnetica (NMR) rivestano una importanza strategica da un punto di vista funzionale e metabolico. Questi lipidi, da un lato un lato sono stati associati allo sviluppo di cellule neoplastiche maligne e alla morte cellulare, dall’altro sono risultati anche messaggeri di processi benigni quali l’attivazione e la proliferazione di un normale processo di crescita cellulare. Nell’ambito di questa ricerca è nata una collaborazione tra il Dipartimento di Biochimica “G. Moruzzi” ed il Dipartimento di Scienze degli Alimenti dell’Università di Bologna. Infatti, il gruppo di lipochimica del Dipartimento di Scienze degli Alimenti, a cui fa capo il Prof. Giovanni Lercker, da sempre si occupa dello studio delle frazioni lipidiche, mediante le principali tecniche cromatografiche. L’obiettivo di questa collaborazione è stato quello di caratterizzare la componente lipidica totale estratta dai tessuti renali umani sani e neoplastici, mediante l’utilizzo combinato di diverse tecniche analitiche: la risonanza magnetica nucleare (1H e 13C RMN), la cromatografia su strato sottile (TLC), la cromatografia liquida ad alta prestazione (HPLC) e la gas cromatografia (GC) (paper 5-6-7)
Resumo:
The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.
Resumo:
The aim of the first part of this thesis was to evaluate the effect of trans fatty acid- (TFA), contaminant, polycyclic aromatic hydrocarbon (PAH)- and oxidation productenriched diets on the content of TFA and conjugated linoleic acid (CLA) isomers in meat and liver of both poultry and rabbit. The enriched feedings were prepared with preselected fatty co-and by-products that contained low and high levels of TFA (low, palm fatty acid distillate; high, hydrogenated palm fatty acid distillate), environmental contaminants (dioxins and PCBs) (two different fish oils), PAH (olive oil acid oils and pomace olive oil from chemical refining, for low and high levels) and oxidation products (sunflower-olive oil blend before and after frying), so as to obtain single feedings with three enrichment degrees (high, medium and low) of the compound of interest. This experimental set-up is a part of a large, collaborative European project (http://www.ub.edu/feedfat/), where other chemical and health parameters are assessed. Lipids were extracted, methylated with diazomethane, then transmethylated with 2N KOH/methanol and analyzed by GC and silver-ion TLC-GC. TFA and CLA were determined in the fats, the feedings, meat and liver of both poultry and rabbit. In general, the level of TFA and CLA in meat and liver mainly varied according to those originally found in the feeding fats. It must be pointed out, though, that TFA and CLA accumulation was different for the two animal species, as well as for the two types of tissues. The TFA composition of meat and liver changes according to the composition of the oils added to the feeds with some differences between species. Chicken meat with skin shows higher TFA content (2.6–5.4 fold) than rabbit meat, except for the “PAH” trial. Chicken liver shows higher TFA content (1.2–2.1 fold) than rabbit liver, except for the “TRANS” and “PAH” trials. In both chicken and rabbit meats, the TFA content was higher for the “TRANS” trial, followed by the “DIOXIN” trial. Slight differences were found on the “OXIDATION” and “PAH” trends in both types of meats. In both chicken and rabbit livers, the TFA content was higher for the “TRANS” trial, followed by those of the “PAH”, “DIOXIN” and “OXIDATION” trials. This trend, however, was not identical to that of feeds, where the TFA content varied as follows: “TRANS” > “DIOXIN” >“PAH” > “OXIDATION”. In chicken and rabbit meat samples, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, except for the “DIOXIN” trial where C18:3 TFA > C18:2 TFA. In chicken and rabbit liver samples of the “TRANS” and “OXIDATION” trials, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, whereas C18:3 TFA > C18:2 in the “DIOXIN” trial. Slight differences were found on the “PAH” trend in livers from both species. The second part of the thesis dealt with the study of lipid oxidation in washed turkey muscle added with different antioxidants. The evaluation on the oxidative stability of muscle foods found that oxidation could be measured by headspace solid phase microestraction (SPME) of hexanal and propanal. To make this method effective, an antioxidant system was added to stored muscle to stop the oxidative processes. An increase in ionic strength of the sample was also implemented to increase the concentration of aldehydes in the headspace. This method was found to be more sensitive than the commonly used thiobarbituric acid reactive substances (TBARs) method. However, after antioxidants were added and oxidation was stopped, the concentration of aldehydes decreased. It was found that the decrease in aldehyde concentration was due to the binding of the aldehydes to muscle proteins, thus decreasing the volatility and making them less detectable.
Resumo:
The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.
Resumo:
In gasoline Port Fuel Injection (PFI) and Direct Injection (GDI) internal combustion engines, the liquid fuel might be injected into a gaseous ambient in a superheated state, resulting in flash boiling of the fuel. The importance to investigate and predict such a process is due to the influence it has on the liquid fuel atomization and vaporization and thus on combustion, with direct implications on engine performances and exhaust gas emissions. The topic of the present PhD research involves the numerical analysis of the behaviour of the superheated fuel during the injection process, in high pressure injection systems like the ones equipping GDI engines. Particular emphasis is on the investigation of the effects of the fuel superheating degree on atomization dynamics and spray characteristics. The present work is a look at the flash evaporation and flash boiling modeling, from an engineering point of view, addressed to keep the complex physics involved as simple as possible, however capturing the main characteristics of a superheated fuel injection.
Resumo:
This Ph.D. thesis focuses on the investigation of some chemical and sensorial analytical parameters linked to the quality and purity of different categories of oils obtained by olives: extra virgin olive oils, both those that are sold in the large retail trade (supermarkets and discounts) and those directly collected at some Italian mills, and lower-quality oils (refined, lampante and “repaso”). Concurrently with the adoption of traditional and well-known analytical procedures such as gas chromatography and high-performance liquid chromatography, I carried out a set-up of innovative, fast and environmentally-friend methods. For example, I developed some analytical approaches based on Fourier transform medium infrared spectroscopy (FT-MIR) and time domain reflectometry (TDR), coupled with a robust chemometric elaboration of the results. I investigated some other freshness and quality markers that are not included in official parameters (in Italian and European regulations): the adoption of such a full chemical and sensorial analytical plan allowed me to obtain interesting information about the degree of quality of the EVOOs, mostly within the Italian market. Here the range of quality of EVOOs resulted very wide, in terms of sensory attributes, price classes and chemical parameters. Thanks to the collaboration with other Italian and foreign research groups, I carried out several applicative studies, especially focusing on the shelf-life of oils obtained by olives and on the effects of thermal stresses on the quality of the products. I also studied some innovative technological treatments, such as the clarification by using inert gases, as an alternative to the traditional filtration. Moreover, during a three-and-a-half months research stay at the University of Applied Sciences in Zurich, I also carried out a study related to the application of statistical methods for the elaboration of sensory results, obtained thanks to the official Swiss Panel and to some consumer tests.
Resumo:
This research work is aimed at the valorization of two types of pomace deriving from the extra virgin olive oil mechanical extraction process, such as olive pomace and a new by-product named “paté”, in the livestock sector as important sources of antioxidants and unsaturated fatty acids. In the first research the suitability of dried stoned olive pomace as a dietary supplement for dairy buffaloes was evaluated. The effectiveness of this utilization in modifying fatty acid composition and improving the oxidative stability of buffalo milk and mozzarella cheese have been proven by means of the analysis of qualitative and quantitative parameters. In the second research the use of paté as a new by-product in dietary feed supplementation for dairy ewes, already fed with a source of unsaturated fatty acids such as extruded linseed, was studied in order to assess the effect of this combination on the dairy products obtained. The characterization of paté as a new by-product was also carried out, studying the optimal conditions of its stabilization and preservation at the same time. The main results, common to both researches, have been the detection and the characterization of hydrophilic phenols in the milk. The analytical detection of hydroxytyrosol and tyrosol in the ewes’ milk fed with the paté and hydroxytyrosol in buffalo fed with pomace showed for the first time the presence in the milk of hydroxytyrosol, which is one of the most important bioactive compounds of the oil industry products; the transfer of these antioxidants and the proven improvement of the quality of milk fat could positively interact in the prevention of some human cardiovascular diseases and some tumours, increasing in this manner the quality of dairy products, also improving their shelf-life. These results also provide important information on the bioavailability of these phenolic compounds.
Resumo:
The demand of minimally processed fruits and vegetables has increased in the last years. However, their intrinsic characteristics may favor the growth of pathogens and spoilage microbiota. The negative effects on human health reported for some traditional chemical sanitizers have justified the search for substitutes to guarantee food safety and quality. In this work we have evaluate the potential of some essential oils and their components to improve the safety and the shelf life of Lamb’s lettuce (Valerianella locusta) and apples (Golden delicious). Moreover, the effects of selected lactic acid bacteria alone or in combination with essential oils or their components, on the shelf-life and safety as well as organoleptic properties of minimally processed products, were evaluated. Since the lack of knowledge of microbial cell targets of essential oils represent one of the most important limit to the use of these molecules at industrial level, another aim of this thesis was the study of the action mechanisms of essential oils and their components. The results obtained showed the beneficial effects of the natural antimicrobials as well as the selected lactic acid bacteria on minimally processed fruit and vegetable safety and shelf-life, without detrimental effects on the quality parameters. The beneficial effects obtained by the use of the selected biocontrol agents were further increased combining them with selected natural antimicrobials. The natural antimicrobial employed induced noticeable modifications of membrane fatty acid profiles and volatile compounds produced by microbial cells during the growth. The modification of the expression in genes involved in fatty acid biosynthesis suggesting that the cytoplasmic membrane of microbial cells is one of the major cellular target of essential oils and their components. The comprehension of microbial stress response mechanisms can contribute to the scaling up of natural antimicrobials and bio-control agents at industrial level.
Resumo:
In recent years, an increasing attention has been given to the optimization of the performances of new supramolecular systems, as antennas for light collection. In such background, the aim of this thesis was the study of multichromophoric architectures capable of performing such basic action. A synthetic antenna should consist of a structure with large UV-Vis absorption cross-section, panchromatic absorption, fixed orientation of the components and suitable energy gradients between them, in order to funnel absorbed energy towards a specific site, through fast energy-transfer processes. Among the systems investigated in this thesis, three suitable classes of compounds can be identified: 1) transition metal-based multichromophoric arrays, as models for antenna construction, 2) free-base trans-A2B-phenylcorroles, as self-assembling systems to make effective mimics of the photosynthetic system, and 3) a natural harvester, the Photosystem I, immobilized on the photoanode of a solar-to-fuel conversion device. The discussion starts with the description of the photophysical properties of dinuclear quinonoid organometallic systems, able to fulfil some of the above mentioned absorption requirements, displaying in some cases panchromatic absorption. The investigation is extended to the efficient energy transfer processes occurring in supramolecular architectures, suitably organized around rigid organic scaffolds, such as spiro-bifluorene and triptycene. Furthermore, the photophysical characterization of three trans-A2B-phenylcorroles with different substituents on the meso-phenyl ring is introduced, revealing the tendency of such macrocycles to self-organize into dimers, by mimicking natural self-aggregates antenna systems. In the end, the photophysical analysis moved towards the natural super-complex PSI-LHCI, immobilized on the hematite surface of the photoanode of a bio-hybrid dye-sensitized solar cell. The importance of the entire work is related to the need for a deep understanding of the energy transfer mechanisms occurring in supramolecules, to gain insights and improve the strategies for governing the directionality of the energy flow in the construction of well-performing antenna systems.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.