9 resultados para Flow between Eccentric Annulus
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Geoffroy’s bat Myotis emarginatus is mainly present in southern, south-eastern and central Europe (Červerný, 1999) and is often recorded from northern Spain (Quetglas, 2002; Flaquer et al., 2004). It has demonstrated the species’ preference for forest. Myotis capaccinii, confined to the Mediterranean (Guille´n, 1999), is classified as ‘vulnerable’ on a global scale (Hutson, Mickleburgh & Racey, 2001). In general, the species preferred calm waters bordered by well-developed riparian vegetation and large (> 5 m) inter-bank distances (Biscardi et al. 2007). In this study we present the first results about population genetic structure of these two species of genus Myotis. We used two methods of sampling: invasive and non-invasive techniques. A total of 323 invasive samples and a total of 107 non-invasive samples were collected and analyzed. For Myotis emarginatus we have individuated for the first time a set of 7 microsatellites, which can work on this species, started from a set developed on Myotis myotis (Castella et al. 2000). We developed also a method for analysis of non-invasive samples, that given a good percentage of positive analyzed samples. The results have highlighted for the species Myotis emarginatus the presence on the European territory of two big groups, discovered by using the microsatellites tracers. On this species, 33 haplotypes of Dloop have been identified, some of them are presented only in some colonies. We identified respectively 33 haplotypes of Dloop and 10 of cytB for Myotis emarginatus and 25 of dloop and 15 of cytB for Myotis capaccinii. Myotis emarginatus’ results, both microsatellites and mtDNA, show that there is a strong genetic flow between different colonies across Europe. The results achieved on Myotis capaccinii are very interesting, in this case either for the microsatellites or the mitochondrial DNA sequences, and it has been highlighted a big difference between different colonies.
Resumo:
Il modello gravitazionale e' ormai diventato un "cavallo da battaglia" in economia internazionle ed e' comunemente utilizzato nella determinazione dei flussi commerciali. Recentemente, molti studi hanno mostrato l'importanza della dipendenza spaziale, che va' a considerare quegli effetti dovuti al cosiddetto "third country". Intervengono a questo scopo la modellistica e le tecniche di stima di Econometria Spaziale. Verra' fatto uso di tali tecniche allo scopo di stimare con un modello gravitazionale spaziale il commercio internazionale tra paesi dell'OCSE per un panel di 22 anni. L'obiettivo e' quindi duplice: da un lato, si andra' ad applicare le piu' moderne tecniche di Econometria Spaziale, in un campo in cui tali contributi scarseggiano. Dall'altro lato,verra' fornita una interpretazione del comportamento del commercio internazionale tra paesi dell'OCSE, approfondendo gli aspetti relativi all'effetto del"third country" e del fenomeno migratorio. Inoltre , viene proposta un'analisi che ha lo scopo di validare l'ipotesi di omissione della distanza dal modello gravitazione strutturale.
Resumo:
The velocity and mixing field of two turbulent jets configurations have been experimentally characterized by means of cold- and hot-wire anemometry in order to investigate the effects of the initial conditions on the flow development. In particular, experiments have been focused on the effect of the separation wall between the two streams on the flow field. The results of the experiments have pointed out that the wake behind a thick wall separating wall has a strong influence on the flow field evolution. For instance, for nearly unitary velocity ratios, a clear vortex shedding from the wall is observable. This phenomenon enhances the mixing between the inner and outer shear layer. This enhancement in the fluctuating activity is a consequence of a local absolute instability of the flow which, for a small range of velocity ratios, behaves as an hydrodynamic oscillator with no sensibility to external perturbations. It has been suggested indeed that this absolute instability can be used as a passive method to control the flow evolution. Finally, acoustic excitation has been applied to the near field in order to verify whether or not the observed vortex shedding behind the separating wall is due to a global oscillating mode as predicted by the theory. A new scaling relationship has been also proposed to determine the preferred frequency for nearly unitary velocity ratios. The proposed law takes into account both the Reynolds number and the velocity ratio dependence of this frequency and, therefore, improves all the previously proposed relationships.
Resumo:
The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.
Resumo:
An extensive sample (2%) of private vehicles in Italy are equipped with a GPS device that periodically measures their position and dynamical state for insurance purposes. Having access to this type of data allows to develop theoretical and practical applications of great interest: the real-time reconstruction of traffic state in a certain region, the development of accurate models of vehicle dynamics, the study of the cognitive dynamics of drivers. In order for these applications to be possible, we first need to develop the ability to reconstruct the paths taken by vehicles on the road network from the raw GPS data. In fact, these data are affected by positioning errors and they are often very distanced from each other (~2 Km). For these reasons, the task of path identification is not straightforward. This thesis describes the approach we followed to reliably identify vehicle paths from this kind of low-sampling data. The problem of matching data with roads is solved with a bayesian approach of maximum likelihood. While the identification of the path taken between two consecutive GPS measures is performed with a specifically developed optimal routing algorithm, based on A* algorithm. The procedure was applied on an off-line urban data sample and proved to be robust and accurate. Future developments will extend the procedure to real-time execution and nation-wide coverage.
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
In questo lavoro ci siamo posti come obiettivo lo studio della disfunzione atrio-ventricolare mediante tecniche ecocardiografiche avanzate (come il Tissue Doppler Imaging - TDI) in cani affetti da malattia mitralica cronica (MVD). Una prima parte è volta alla valutazione della funzionalità diastolica del ventricolo destro. Ci siamo proposti di analizzare la funzione del ventricolo destro in cani affetti da malattia del cuore sinistro per comprendere se quest’ultima possa condizionare direttamente la performance del settore cardiaco controlaterale. I risultati più importanti che abbiamo riscontrato sono: l’assenza di differenze significative nella disfunzione sisto-diastolica del ventricolo destro in cani con MVD a diverso stadio; la diretta correlazione tra le variabili TDI di funzionalità del ventricolo destro con il grado di disfunzione del ventricolo sinistro, come indicatori di interdipendenza ventricolare; ed infine il riscontro di una maggior tendenza ad alterazioni diastoliche del ventricolo sinistro in cani con ipertensione polmonare. A quest’ultimo proposito, per quanto riguarda le variabili TDI, il rapporto E/e’ dell’anulus mitralico laterale e settale è risultato avere una differenza significativa tra i cani con ipertensione polmonare e quelli privi di ipertensione polmonare (P<0,01). Nel secondo studio abbiamo applicato il TDI per l’analisi della funzione sisto-diastolica dell’atrio sinistro. Il lavoro è stato articolato in una parte di validazione della metodica su cani normali ed una su animali affetti da MDV. I risultati ottenuti mostrano che la valutazione ecocardiografica delle proprietà di deformazione dell’atrio sinistro basata sul TDI è attuabile e riproducibile nel cane. Abbiamo fornito dei valori di normalità per questa specie e confrontato questi dati con quelli ricavati in cani portatori di MVD. Le differenza tra le varie classi di malattia, nei diversi gradi di dilatazione atriale, sono risultate limitate, ma abbiamo individuato delle correlazioni tra i parametri TDI ed alcune variabili di funzionalità atriale.
Resumo:
Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.
Resumo:
The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.