3 resultados para Exportation of nutrients

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cured meats and dairy products are criticized for their salt content and synthetic additives. This has led to the development of strategies to reduce and replace these ingredients. Since the food matrix and technological processes can affect the bioaccessibility of nutrients, it is necessary to study their release during digestion to determine the real nutritional value of foods. In the first part of this PhD project, the impact on the nutritional quality of the reduction of sodium content and of the replacement of synthetic nitrates/nitrites with a combination of innovative formulations was evaluated in Parmigiano Reggiano Cheese and salami. For this purpose, an in vitro digestion model combined with different analytical techniques was used. The results showed that fatty acids and proteins release increased over time during digestion. At the end of digestion, the innovative formulation/processing did not negatively affect fatty acids release and protein hydrolysis, and led to the formation of bioactive peptides. The excessive intake of sugars is correlated with metabolic diseases. After the intestinal uptake, their release in the blood stream depends on their metabolic fate within the enterocyte. In the second part of this PhD project, the absorption and metabolism of glucose, fructose and sucrose was evaluated using intestinal cell line. A faster absorption of fructose than glucose was observed, and a different modulation of the synthesis/transport of other metabolites by monosaccharides was shown. Intestinal cells were also used to verify the stability and intestinal uptake of vitamins (A and D3) delivered to cells through two vehicles. It was shown that the presence of lipids protected the vitamin from external factors such as light, heat and oxygen, and improved their bioavailability Overall, the results obtained in this PhD project confirmed that considering only the chemical composition of foods is not sufficient to determine their nutritional value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.