3 resultados para Exotic insect

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of exotic species is one of the most important threats to biodiversity.This phenomenon may cause economic and environmental damage. To prevent these invasions there are institutions like EPPO. Nevertheless, the introduction of exotic pests is an increasing issue, difficult to control. Classic biological control, based on importation of natural enemies from the country of origin, has been successfully used for over 120 years, but it has also raised some criticism. My research work has focused on the study of the new associations occurring between indigenous parasitoids and three exotic pests introduced in Italy and Europe. The three target insects considered were: Cacyreus marshalli Butler (Lepidoptera: Lycaenidae), a pest of Geranium plants; Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), a plague of Castanea sp. and Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). This ladybug has been introduced as a biological control agent, but since some years it considered as an invasive species. For C. marshalli I performed laboratory tests on acceptance and suitability of immature stages of this butterfly by Exorista larvarum (Diptera: Tachinidae) and Brachymeria tibialis (Hymenoptera: Chalcidicae). The experiments showed that these two parasitoids could be used to contain this pest. For D. kuriphilus I performed field samplings in an infested chestnut area, the samples were maintained in rearing chamber until gall wasp or parasitoids emergence. In the 3-year research many parasitoids of gall wasps were found; one of these, Torymus flavipes (Walker), was found in large number. For H. axyridis the research work included a first phase of field sampling, during which I searched indigenous parasitoids which had adapted to this new host; the only species found was Dinocampus coccinellae (Schrank) (Hymenoptera: Braconidae). Laboratory tests were performed on the wasp rearing, biology and capacity to contain H. axyridis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-year field trials were conducted in northern Italy with the aim of developing a trapcrop-based agroecological approach for the control of flea beetles (Chaetocnema tibialis (Illiger), Phyllotreta spp. (Chevrolat) (Coleoptera: Chrysomelidae)) and Lygus rugulipennis Poppius (Hemiptera: Miridae), key pests of sugar beet and lettuce, respectively. Flea beetle damage trials compared a trap cropping treatment, i.e., a sugar beet plot with a border of Sinapis alba (L.) and Brassica juncea (L.) with a control treatment, i.e., a sugar beet plot with bare soil as field border. Sugar beets grown near trap crops showed a significant decrease (≈40%) in flea beetle damage compared to control. Moreover, flea beetle damage varied with distance from the edge of the trap plants, being highest at 2 m from the edge, then decreasing at higher distances. Regarding L. rugulipennis on lettuce two experiments were conducted. A semiochemical-assisted trap cropping trial was supported by another test evaluating the efficacy of pheromones and trap placement. In this trial, it was found that pheromone baited traps caught significantly more specimens of L. rugulipennis than unbaited traps. It was also found that traps placed at ground level produced larger catches than traps placed at the height of 70 cm. In the semiochemical-assisted trap cropping experiment, a treatment where lettuce was grown next to two Alfa-Alfa borders containing pheromone baited traps was compared with a control treatment, where lettuce was grown near bare soil. This experiment showed that the above-mentioned strategy managed to reduce L. rugulipennis damage to lettuce by ≈30%. From these studies, it appears that trap crop-based strategy, alone or with baited traps, made it possible to reduce crop damage to economically acceptable levels and to minimize the need for insecticide treatments, showing that those strategy could be implemented in organic farming as a means of controlling insect pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The western honey bee, Apis mellifera L., is currently the model specie for pesticide risk assessment on pollinators with the assumption that the worst-case scenarios for this species are sufficiently conservative to protect other insect pollinators. However, recent studies have showed that wild species may be more sensitive to plant protection products, due to differences in biology and life cycles. Therefore, there is the need to extend the risk assessment within a more ecological approach, in order to ensure that there are no irreversible effects on non-target organisms and in the environment. My dissertation aims to expand the risk assessment to other insect pollinators (including wild and managed pollinators), in order to cover some of the gaps of the current schemes. In this thesis, it is presented three experiments that cover the early stages of a solitary bee (chapter 1), the development of molecular tools for early detection of sub-lethal effects (chapter 2) and the development of protocols to access lethal and sub-lethal effects on other pollinator taxa (Diptera; chapter 3).