10 resultados para Ectopic osteogenesis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory of aging postulates that aging is a remodeling process where the body of survivors progressively adapts to internal and external damaging agents they are exposed to during several decades. Thus , stress response and adaptation mechanisms play a fundamental role in the aging process where the capability of adaptating effects, certainly, also is related the lifespan of each individual. A key gene linking aging to stress response is indeed p21, an induction of cyclin-dependent kinase inhibitor which triggers cell growth arrest associated with senescence and damage response and notably is involved in the up-regulation of multiple genes that have been associated with senescence or implicated in age-related . This PhD thesis project that has been performed in collaboration with the Roninson Lab at Ordway Research Institute in Albany, NY had two main aims: -the testing the hypothesis that p21 polymorphisms are involved in longevity -Evaluating age-associated differences in gene expression and transcriptional response to p21 and DNA damage In the first project, trough PCR-sequencing and Sequenom strategies, we we found out that there are about 30 polymorphic variants in the p21 gene. In addition, we found an haplotpype located in -5kb region of the p21 promoter whose frequency is ~ 2 fold higher in centenarians than in the general population (Large-scale analysis of haplotype frequencies is currently in progress). Functional studies I carried out on the promoter highilighted that the ―centenarian‖ haplotype doesn’t affect the basal p21 promoter activity or its response to p53. However, there are many other possible physiological conditions in which the centenarian allele of the p21 promoter may potentially show a different response (IL6, IFN,progesterone, vitamin E, Vitamin D etc). In the second part, project #2, trough Microarrays we seeked to evaluate the differences in gene expression between centenarians, elderly, young in dermal fibroblast cultures and their response to p21 and DNA damage. Microarray analysis of gene expression in dermal fibroblast cultures of individuals of different ages yielded a tentative "centenarian signature". A subset of genes that were up- or downregulated in centenarians showed the same response to ectopic expression of p21, yielding a putative "p21-centenarian" signature. Trough RQ-PCR (as well Microarrays studies whose analysis is in progress) we tested the DNA damage response of the p21-centenarian signature genes showing a correlation stress/aging in additional sets of young and old samples treated with p21-inducing drug doxorubicin thus finding for a subset of of them , a response to stress age-related.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of phospholipase C-β1 (PLC-β1) and cyclin D3 is highly induced during skeletal myoblast differentiation. We have previously shown that PLC-β1 activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-β1 is a crucial regulator of mouse cyclin D3 gene. Here we report that PLC-β1 catalytic activity plays a role in the increase of cyclin D3 levels and in the induction of differentiation of C2C12 skeletal muscle cells. PLC-β1 mutational analysis revealed the importance of His331 and His378 for the catalytic activity. We show that following insulin administration, cyclin D3 mRNA levels are lower in cells overexpressing the PLC-β1 catalytically inactive form, as compared to wild type cells. We describe a novel signaling pathway elicited by PLC-β1 that modulates Activator Protein-1 (AP-1) activity. Indeed, gel mobility shift assays indicate that there is a c-jun binding site located in cyclin D3 promoter region specifically regulated by PLC-β1 and that c-jun binding activity is significantly increased by insulin stimulation and PLC-β1 overexpression. Moreover, mutation of c-jun/AP-1 binding site decreases the basal cyclin D3 promoter activity and eliminates its induction by insulin and PLC-β1 overexpression. Interestingly, we observed that the ectopic expression of the Inositol Polyphosphate Multikinase (IPMK) in C2C12 myoblasts enhances cyclin D3 gene expression and that the mutation of c-jun site in cyclin D3 promoter determines an impairment of IPMK-dependent promoter induction. These results indicate that PLC-β1 activates a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation through IPMK signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obiettivi: Valutare la modalità  più efficace per la riabilitazione funzionale del limbo libero di fibula "single strut", dopo ampie resezioni per patologia neoplastica maligna del cavo orale. Metodi: Da una casistica di 62 ricostruzioni microvascolari con limbo libero di fibula, 11 casi sono stati selezionati per essere riabilitati mediante protesi dentale a supporto implantare. 6 casi sono stati trattati senza ulteriori procedure chirurgiche ad eccezione dell'implantologia (gruppo 1), affrontando il deficit di verticalità  della fibula attraverso la protesi dentaria, mentre i restanti casi sono stati trattati con la distrazione osteogenetica (DO) della fibula prima della riabilitazione protesica (gruppo 2). Il deficit di verticalità  fibula/mandibola è stato misurato. I criteri di valutazione utilizzati includono la misurazione clinica e radiografica del livello osseo e dei tessuti molli peri-implantari, ed il livello di soddisfazione del paziente attraverso un questionario appositamente redatto. Risultati: Tutte le riabilitazioni protesiche sono costituite da protesi dentali avvitate su impianti. L'età  media è di 52 anni, il rapporto uomini/donne è di 6/5. Il numero medio di impianti inseriti nelle fibule è di 5. Il periodo massimo di follow-up dopo il carico masticatorio è stato di 30 mesi per il gruppo 1 e di 38.5 mesi (17-81) di media per il gruppo 2. Non abbiamo riportato complicazioni chirurgiche. Nessun impianto è stato rimosso dai pazienti del gruppo 1, la perdita media di osso peri-implantare registrata è stata di 1,5 mm. Nel gruppo 2 sono stati riportati un caso di tipping linguale del vettore di distrazione durante la fase di consolidazione e un caso di frattura della corticale basale in assenza di formazione di nuovo osso. L'incremento medio di osso in verticalità è stato di 13,6 mm (12-15). 4 impianti su 32 (12.5%) sono andati persi dopo il periodo di follow-up. Il riassorbimento medio peri-implantare, è stato di 2,5 mm. Conclusioni: Le soluzioni più utilizzate per superare il deficit di verticalità  del limbo libero di fibula consistono nell'allestimento del lembo libero di cresta iliaca, nel posizionare la fibula in posizione ideale da un punto di vista protesico a discapito del profilo osseo basale, l'utilizzo del lembo di fibula nella versione descritta come "double barrel", nella distrazione osteogenetica della fibula. La nostra esperienza concerne il lembo libero di fibula che nella patologia neoplastica maligna utilizziamo nella versione "single strut", per mantenere disponibili tutte le potenzialità  di lunghezza del peduncolo vascolare, senza necessità  di innesti di vena. Entrambe le soluzioni, la protesi dentale ortopedica e la distrazione osteogenetica seguita da protesi, entrambe avvitate su impianti, costituiscono soluzioni soddisfacenti per la riabilitazione funzionale della fibula al di là  del suo deficit di verticalità . La prima soluzione ha preso spunto dall'osservazione dei buoni risultati della protesi dentale su impianti corti, avendo un paragonabile rapporto corona/radice, la DO applicata alla fibula, sebbene sia risultata una metodica con un numero di complicazioni più elevato ed un maggior livello di riassorbimento di osso peri-implantare, costituisce in ogni caso una valida opzione riabilitativa, specialmente in caso di notevole discrepanza mandibulo/fibulare. Decisiva è la scelta del percorso terapeutico dopo una accurata valutazione di ogni singolo caso. Vengono illustrati i criteri di selezione provenienti dalla nostra esperienza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteogenesis imperffecta (OI) is a heterogeneous group of heritable connetive tissue diseases, quantity and/or qualitative defect in type 1 collagen syntesis; sometimes and in some types it can be associated to dentinogenesis imperfecta (DI), a hereditary disorder in dentin formation that comprises a group of autosomal dominant genetic conditions characterized by abnormal dentine structure affecting either the primary or both the primary and secondary dentitions. Aim: the aim of this study was to assess the correlation between OI and DI from both a clinical and histological point of view, clarifying the structural and ultrastructural changes. Eighteen children (&-15 years aged) with diagnosis of OI were examined for dental alterations referable to DI; for each patient, the OI type (I, III, IV) was recorded. Extracted or normally exfolied teeth were subjected to a histological examination.Results: a total of eleven patients had abnormal discolourations referable to DI: five patients were affected by OI type I, three by OI III, and three patients by OI type IV. The discolourations, yellow/brown or oplaescent grey, could not be related to the different types of OI. Histological exam of primary teeth showed severe pathological change in dentin, structured into four diffeent layers. A collagen defect due to odontoblast dysfunction was theorized to be on the base of the histological changes. Conclusions: there is no correlation between the type of OI and the type of discolouration. The underlying dentinal defect seems to be related to an odontoblast dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MYC is a transcription factor that can activate transcription of several targets by direct binding to their promoters at specific DNA sequences (E-box). Recent findings have also shown that it can exert its biological role by repressing transcription of other set of genes. C-MYC can mediate repression on its target genes through interaction with factors bound to promoter regions but not through direct recognition of typical E-Boxes. In this thesis, we investigated whether MYCN can also repress gene transcription and how this is mechanistically achieved. Moreover, expression of TRKA, P75NTR and ABCC3 is attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and transcriptional repression of these three genes. We found that MYCN is physically associated with gene promoters in vivo in proximity of the transcriptional start sites and this association requires interactions with SP1 and/or MIZ-1. Furthermore, we show that this interaction could interfere with SP1 and MIZ-1 activation functions by recruiting co-repressors such as DNMT3a or HDACs. Studies in vitro suggest that MYCN interacts through distinct domains with SP1, MIZ-1 and HDAC1 supporting the idea that MYCN may form different complexes by interacting with different proteins. Re-expression of endogenous TRKA and P75NTR with exposure to the TSA sensitizes neuroblastoma to NGF-mediated apoptosis, whereas ectopic expression of ABCC3 decreases cell motility without interfering with growth. Finally, using shRNA whole genome library, we dissected the P75NTR repression trying to identify novel factors inside and/or outside MYCN complex for future therapeutic approaches. Overall, our results support a model in which MYCN can repress gene transcription by direct interaction with SP1 and/or MIZ-1, and provide further lines of evidence on the importance of transcriptional repression induced by Myc in tumor biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human DMD locus encodes dystrophin protein. Absence or reduced levels of dystrophin (DMD or BMD phenotype, respectively) lead to progressive muscle wasting. Little is known about the complex coordination of dystrophin expression and its transcriptional regulation is a field of intense interest. In this work we found that DMD locus harbours multiple long non coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. These lncRNAs are tissue-specific and highly expressed during myogenesis, suggesting a possible role in tissue-specific expression of DMD gene isoforms. Their forced ectopic expression in human muscle and neuronal cells leads to a specific and negative regulation of endogenous dystrophin full lenght isoforms. An intriguing aspect regarding the transcription of the DMD locus is the gene size (2.4Mb). The mechanism that ensures the complete synthesis of the primary transcript and the coordinated splicing of 79 exons is still completely unknown. By ChIP-on-chip analyses, we discovered novel regions never been involved before in the transcription regulation of the DMD locus. Specifically, we observed enrichments for Pol II, P-Ser2, P-Ser5, Ac-H3 and 2Me-H3K4 in an intronic region of 3Kb (approximately 21Kb) downstream of the end of DMD exon 52 and in a region of 4Kb spanning the DMD exon 62. Interestingly, this latter region and the TSS of Dp71 are strongly marked by 3Me-H3K36, an histone modification associated with the regulation of splicing process. Furthermore, we also observed strong presence of open chromatin marks (Ac-H3 and 2Me-H3K4) around intron 34 and the exon 45 without presence of RNA pol II. We speculate that these two regions may exert an enhancer-like function on Dp427m promoter, although further investigations are necessary. Finally, we investigated the nuclear-cytoplasmic compartmentalization of the muscular dystrophin mRNA and, specifically, we verified whether the exon skipping therapy could influence its cellular distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MYCN amplification is a genetic hallmark of the childhood tumour neuroblastoma. MYCN-MAX dimers activate the expression of genes promoting cell proliferation. Moreover, MYCN seems to transcriptionally repress cell differentiation even in absence of MAX. We adopted the Drosophila eye as model to investigate the effect of high MYC to MAX expression ratio on cells. We found that dMyc overexpression in eye cell precursors inhibits cell differentiation and induces the ectopic expression of Antennapedia (the wing Hox gene). The further increase of MYC/MAX ratio results in an eye-to-wing homeotic transformation. Notably, dMyc overexpression phenotype is suppressed by low levels of transcriptional co-repressors and MYCN associates to the promoter of Deformed (the eye Hox gene) in proximity to repressive sites. Hence, we envisage that, in presence of high MYC/MAX ratio, the “free MYC” might inhibit Deformed expression, leading in turn to the ectopic expression of Antennapedia. This suggests that MYCN might reinforce its oncogenic role by affecting the physiological homeotic program. Furthermore, poor neuroblastoma outcome associates with a high level of the MRP1 protein, encoded by the ABCC1 gene and known to promote drug efflux in cancer cells. Intriguingly, this correlation persists regardless of chemotherapy and ABCC1 overexpression enhances neuroblastoma cell motility. We found that Drosophila dMRP contributes to the adhesion between the dorsal and ventral epithelia of the wing by inhibiting the function of integrin receptors, well known regulators of cell adhesion and migration. Besides, integrins play a crucial role during synaptogenesis and ABCC1 locus is included in a copy number variable region of the human genome (16p13.11) involved in neuropsychiatric diseases. Interestingly, we found that the altered dMRP/MRP1 level affects nervous system development in Drosophila embryos. These preliminary findings point out novel ABCC1 functions possibly defining ABCC1 contribution to neuroblastoma and to the pathogenicity of 16p13.11 deletion/duplication

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades a negative trend in inbreeding has accompanied the evident improvement in productivity and performance of bovine domestic population, predisposing to the occurrence of recessively inherited disorders. The objectives of this thesis were: a) the study of genetic diseases applying a “forward genetic approach” (FGA); b) the estimation of the prevalence of deleterious alleles responsible for eight recessive disorders in different breeds; c) the collection of well-characterized materials in a Biobank for Bovine Genetic Disorders. The FGA allowed the identification of seven new recessive deleterious variants (Paunch calf syndrome - KDM2B; Congenital cholesterol deficiency - APOB; Ichthyosis congenita - FA2H; Hypotrichosis - KRT71; Hypotrichosis - HEPHL1; Achromatopsia - CNGB3; Hemifacial microsomia – LAMB1) and of seven new de novo dominant deleterious variants (Achondrogenesis type II - two variants in COL2A1; Osteogenesis imperfecta - COL1A1; Skeletal-cardio-enteric dysplasia - MAP2K2; Congenital neuromuscular channelopathy - KGNG1; Epidermolysis bullosa simplex - KRT5; Classical Ehlers-Danlos syndrome - COL5A2) in different breeds, associated with a large spectrum of phenotypes affecting different systems. The FGA was based on the sequence of a clinical, genealogical, gross- and/or histopathological and genomic study. In particular, a WGS trio-approach (patient, dam and sire) was applied. The prevalence of deleterious alleles was calculated for the Pseudomyotonia congenita, Paunch calf syndrome, Hemifacial microsomia, Congenital bilateral cataract, Ichthyosis congenita, Ichthyosis fetalis, Achromatopsia and Hypotrichosis. A particular concern resulted the allelic frequency of 12% for the Paunch calf syndrome in Romagnola cattle. In respect to the Biobank for Bovine Genetic Diseases, biological materials of clinical cases and their available relatives as well as controls used for the allelic frequency estimations were stored at -20 °C. Altogether, around 16.000 samples were added to the biobank.