10 resultados para Dynamic Tasks, Ecological Constraints, Cognitive Function, Computer Simulation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Computer simulation of ordering and dynamics in liquid crystals in the bulk and close to the surface
Resumo:
The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of MaierSaupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystalsmectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CBvacuum, finding a homeotropic orientation of the nematic at this interface.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
The present study was performed to validate a spatial working memory task using pharmacological manipulations. The water escape T-maze, which combines the advantages of the Morris water maze and the T-maze while minimizes the disadvantages, was used. Scopolamine, a drug that affects cognitive function in spatial working memory tasks, significantly decreased the rat performance in the present delayed alternation task. Since glutamate neurotransmission plays an important role in the maintaining of working memory, we evaluated the effect of ionotropic and metabotropic glutamatergic receptors antagonists, administered alone or in combination, on rat behaviour. As the acquisition and performance of memory tasks has been linked to the expression of the immediately early gene cFos, a marker of neuronal activation, we also investigated the neurochemical correlates of the water escape T-maze after pharmacological treatment with glutamatergic antagonists, in various brain areas. Moreover, we focused our attention on the involvement of perirhinal cortex glutamatergic neurotransmission in the acquisition and/or consolidation of this particular task. The perirhinal cortex has strong and reciprocal connections with both specific cortical sensory areas and some memory-related structures, including the hippocampal formation and amygdala. For its peculiar position, perirhinal cortex has been recently regarded as a key region in working memory processes, in particular in providing temporary maintenance of information. The effect of perirhinal cortex lesions with ibotenic acid on the acquisition and consolidation of the water escape T-maze task was evaluated. In conclusion, our data suggest that the water escape T-maze could be considered a valid, simple and quite fast method to assess spatial working memory, sensible to pharmacological manipulations. Following execution of the task, we observed cFos expression in several brain regions. Furthermore, in accordance to literature, our results suggest that glutamatergic neurotransmission plays an important role in the acquisition and consolidation of working memory processes.
Resumo:
The aim of this PhD thesis was to study at a microscopic level different liquid crystal (LC) systems, in order to determine their physical properties, resorting to two distinct methodologies, one involving computer simulations, and the other spectroscopic techniques, in particular electron spin resonance (ESR) spectroscopy. By means of the computer simulation approach we tried to demonstrate this tool effectiveness for calculating anisotropic static properties of a LC material, as well as for predicting its behaviour and features. This required the development and adoption of suitable molecular models based on a convenient intermolecular potentials reflecting the essential molecular features of the investigated system. In particular, concerning the simulation approach, we have set up models for discotic liquid crystal dimers and we have studied, by means of Monte Carlo simulations, their phase behaviour and self-assembling properties, with respect to the simple monomer case. Each discotic dimer is described by two oblate GayBerne ellipsoids connected by a flexible spacer, modelled by a harmonic "spring" of three different lengths. In particular we investigated the effects of dimerization on the transition temperatures, as well as on the characteristics of molecular aggregation displayed and the relative orientational order. Moving to the experimental results, among the many experimental techniques that are typically employed to evaluate LC system distinctive features, ESR has proved to be a powerful tool in microscopic scale investigation of the properties, structure, order and dynamics of these materials. We have taken advantage of the high sensitivity of the ESR spin probe technique to investigate increasingly complex LC systems ranging from devices constituted by a polymer matrix in which LC molecules are confined in shape of nano- droplets, as well as biaxial liquid crystalline elastomers, and dimers whose monomeric units or lateral groups are constituted by rod-like mesogens (11BCB). Reflection-mode holographic-polymer dispersed liquid crystals (H-PDLCs) are devices in which LCs are confined into nanosized (50-300 nm) droplets, arranged in layers which alternate with polymer layers, forming a diffraction grating. We have determined the configuration of the LC local director and we have derived a model of the nanodroplet organization inside the layers. Resorting also to additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross-section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director configuration is a uniaxial quasi- monodomain aligned along the nanodroplet long axis. The results suggest that the molecular organization is dictated mainly by the confinement, explaining, at least in part, the need for switching voltages significantly higher and the observed faster turn-off times in H-PDLCs compared to standard PDLC devices. Liquid crystal elastomers consist in cross-linked polymers, in which mesogens represent the monomers constituting the main chain or the laterally attached side groups. They bring together three important aspects: orientational order in amorphous soft materials, responsive molecular shape and quenched topological constraints. In biaxial nematic liquid crystalline elastomers (BLCEs), two orthogonal directions, rather than the one of normal uniaxial nematic, can be controlled, greatly enhancing their potential value for applications as novel actuators. Two versions of a side-chain BLCEs were characterized: side-on and end-on. Many tests have been carried out on both types of LCE, the main features detected being the lack of a significant dynamical behaviour, together with a strong permanent alignment along the principal director, and the confirmation of the transition temperatures already determined by DSC measurements. The end-on sample demonstrates a less hindered rotation of the side group mesogenic units and a greater freedom of alignment to the magnetic field, as already shown by previous NMR studies. Biaxial nematic ESR static spectra were also obtained on the basis of Molecular Dynamics generated biaxial configurations, to be compared to the experimentally determined ones, as a mean to establish a possible relation between biaxiality and the spectral features. This provides a concrete example of the advantages of combining the computer simulation and spectroscopic approaches. Finally, the dimer α,ω-bis(4'-cyanobiphenyl-4-yl)undecane (11BCB), synthesized in the "quest" for the biaxial nematic phase has been analysed. Its importance lies in the dimer significance as building blocks in the development of new materials to be employed in innovative technological applications, such as faster switching displays, resorting to the easier aligning ability of the secondary director in biaxial phases. A preliminary series of tests were performed revealing the population of mesogenic molecules as divided into two groups: one of elongated straightened conformers sharing a common director, and one of bent molecules, which display no order, being equally distributed in the three dimensions. Employing this model, the calculated values show a consistent trend, confirming at the same time the transition temperatures indicated by the DSC measurements, together with rotational diffusion tensor values that follow closely those of the constituting monomer 5CB.
Resumo:
The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.
Resumo:
Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.
Resumo:
Introduction and Background: Multiple system atrophy (MSA) is a sporadic, adult-onset, progressive neurodegenerative disease characterized clinically by parkinsonism, cerebellar ataxia, and autonomic failure. We investigated cognitive functions longitudinally in a group of probable MSA patients, matching data with sleep parameters. Patients and Methods: 10 patients (7m/3f) underwent a detailed interview, a general and neurological examination, laboratory exams, MRI scans, a cardiovascular reflexes study, a battery of neuropsychological tests, and video-polysomnographic recording (VPSG). Patients were revaluated (T1) a mean of 16±5 (range: 12-28) months after the initial evaluation (T0). At T1, the neuropsychological assessment and VPSG were repeated. Results: The mean patient age was 57.8±6.4 years (range: 47-64) with a mean age at disease onset of 53.2±7.1 years (range: 43-61) and symptoms duration at T0 of 60±48 months (range: 12-144). At T0, 7 patients showed no cognitive deficits while 3 patients showed isolated cognitive deficits. At T1, 1 patient worsened developing multiple cognitive deficits from a normal condition. At T0 and T1, sleep efficiency was reduced, REM latency increased, NREM sleep stages 1-2 slightly increased. Comparisons between T1 and T0 showed a significant worsening in two tests of attention and no significant differences of VPSG parameters. No correlation was found between neuropsychological results and VPSG findings or RBD duration. Discussion and Conclusions: The majority of our patients do not show any cognitive deficits at T0 and T1, while isolated cognitive deficits are present in the remaining patients. Attention is the cognitive function which significantly worsened. Our data confirm the previous findings concerning the prevalence, type and the evolution of cognitive deficits in MSA. Regarding the developing of a condition of dementia, our data did not show a clear-cut diagnosis of dementia. We confirm a mild alteration of sleep structure. RBD duration does not correlate with neuropsychological findings.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.
Resumo:
The simulation of ultrafast photoinduced processes is a fundamental step towards the understanding of the underlying molecular mechanism and interpretation/prediction of experimental data. Performing a computer simulation of a complex photoinduced process is only possible introducing some approximations but, in order to obtain reliable results, the need to reduce the complexity must balance with the accuracy of the model, which should include all the relevant degrees of freedom and a quantitatively correct description of the electronic states involved in the process. This work presents new computational protocols and strategies for the parameterisation of accurate models for photochemical/photophysical processes based on state-of-the-art multiconfigurational wavefunction-based methods. The required ingredients for a dynamics simulation include potential energy surfaces (PESs) as well as electronic state couplings, which must be mapped across the wide range of geometries visited during the wavepacket/trajectory propagation. The developed procedures allow to obtain solid and extended databases reducing as much as possible the computational cost, thanks to, e.g., specific tuning of the level of theory for different PES regions and/or direct calculation of only the needed components of vectorial quantities (like gradients or nonadiabatic couplings). The presented approaches were applied to three case studies (azobenzene, pyrene, visual rhodopsin), all requiring an accurate parameterisation but for different reasons. The resulting models and simulations allowed to elucidate the mechanism and time scale of the internal conversion, reproducing or even predicting new transient experiments. The general applicability of the developed protocols to systems with different peculiarities and the possibility to parameterise different types of dynamics on an equal footing (classical vs purely quantum) prove that the developed procedures are flexible enough to be tailored for each specific system, and pave the way for exact quantum dynamics with multiple degrees of freedom.
Resumo:
This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.