13 resultados para Drug treatment
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: Several lines of evidence showed that inflammation is associated with changes in the expression of tachykinins both in human and animal models. Tachykinins, including substance P (SP), are small peptides expressed in the extrinsic primary afferent nerve fibres and enteric neurons of the gut: they exert their action through three distinct receptors, termed NK1, NK2 and NK3. SP modulates intestinal motility and enteric secretion, acting preferentially through the NK1 receptor. SP neural network and NK1 receptor expression are increased in patients with inflammatory bowel disease, and similar changes were observed in experimental models of inflammation. The 2,4 Dinitrobenzene Sulphonic Acid (DNBS) model of colitis is useful to study innate immunity, non-specific inflammation and wound healing; it has been suggested that the transmural inflammation seen in this model resembles that found in Crohns disease and can therefore be used to study what cells and mediators are involved in this type of inflammation. Aim: To test the possible protective effect of the NK1 receptor antagonist SSR140333 on: 1) acute model of intestinal inflammation; 2) reactivation of DNBS-induced colitis in rats. Methods: Acute colitis was induced in male SD rats by intrarectal administration of DNBS (15 mg/rat in 50% ethanol). Reactivation of colitis was induced by intrarectal injections of DNBS on day 28 (7.5 mg/rat in 35% ethanol). Animals were sacrificed on day 6 (acute colitis) and 29 (reactivation of colitis). SSR140333 (10 mg/kg) was administered orally starting from the day before the induction of colitis for 7 days (acute colitis) or seven days before the reactivation of colitis. Colonic damage was assessed by means of macroscopic and microscopic scores, myeloperoxidase activity (MPO) and TNF-α tissue levels. Enzyme immunoassay was used to measure colonic substance P levels. Statistical analysis was performed using analysis of variance (one-way or two-way, as appropriate) with the Bonferronis correction for multiple comparisons. Results: DNBS administration impaired body weight gain and markedly increased all inflammatory parameters (p<0.01). Treatment with SSR140333 10 mg/kg significantly counteracted the impairment in body weight gain, decreased macroscopic and histological scores and reduced colonic myeloperoxidase activity (p<0.01). Drug treatment counteracted TNF-α tissue levels and colonic SP concentrations (acute model). Similar results were obtained administering the NK1 receptor antagonist SSR140333 (3 and 10 mg/kg) for 5 days, starting the day after the induction of colitis. Intrarectal administration of DNBS four weeks after the first DNBS administration resulted in reactivation of colitis, with increases in macroscopic and histological damage scores and increase in MPO activity. Preventive treatment with SSR140333 10 mg/kg decreased macroscopic damage score, significantly reduced microscopic damage score but did not affect MPO activity. Conclusions: Treatment with SSR140333 significantly reduced intestinal damage in acute model of intestinal inflammation in rats. The NK1 receptor antagonist SSR140333 was also able to prevent relapse in experimental colitis. These results support the hypothesis of SP involvement in intestinal inflammation and indicate that NK receptor antagonists may have a therapeutic potential in inflammatory bowel disease.
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
La poliradicoloneurite acuta idiopatica (ACIP) è una patologia infiammatoria che interessa le radici di più nervi spinali, descritta soprattutto nel cane, più raramente nel gatto, caratterizzata da insorgenza acuta di paresi/paralisi flaccida. L’ACIP mostra notevoli similitudini con la sindrome di Guillan-Barrè dell’uomo (GBS), in cui la patogenesi è su base autoimmunitaria ed è stata correlata con la presenza di alcuni fattori scatenanti (trigger). Lo scopo di questo lavoro è stato quello di caratterizzare l’ACIP in 26 cani, descrivendone la sintomatologia, l’evoluzione clinica, i risultati degli esami diagnostici. La diagnosi si è basata sui riscontri dell’anamnesi, della visita neurologica e del decorso confermata, quando possibile, dai rilievi elettrodiagnostici. Su tutti i cani è stata valutata l’esposizione a specifici agenti infettivi (Toxoplasma gondii, Neospora canunim, Ehrlichia canis, Leishmania infantum), o altri fattori (come vaccinazioni) che potrebbero aver agito da “trigger” per l’instaurarsi della patologia; sull’intera popolazione e su 19 cani non neurologici (gruppo di controllo), si è proceduto alla ricerca degli anticorpi anti-gangliosidi. La sintomatologia di più frequente riscontro (25/26) ha coinvolto la funzione motoria (paresi/plegia) con prevalente interessamento dei 4 arti (24/25) . Sei cani hanno ricevuto una terapia farmacologica, che non ne ha influenzato il decorso, favorevole in 24/26 casi. In 9 pazienti è stata rilevata una precedente esposizione a potenziali trigger; in 10 casi si è riscontrato un titolo anticorpale positivo ad almeno un agente infettivo testato. In 17/26 cani si è ottenuto un titolo anticorpale anti-GM2 e anti-GA1; nella popolazione di controllo solo un caso è risultato positivo. Questi risultati hanno contribuito a consolidare le conoscenze di questa patologia, validando l’utilità della ricerca anticorpale anti-gangliosidica per la diagnosi di ACIP e facendo intravedere la possibilità che l’ACIP possa essere assimilate alla GBS anche dal punto di vista patogenetico, per la quale potrebbe essere considerata come modello animale spontaneo.
Resumo:
During recent years a consistent number of central nervous system (CNS) drugs have been approved and introduced on the market for the treatment of many psychiatric and neurological disorders, including psychosis, depression, Parkinson disease and epilepsy. Despite the great advancements obtained in the treatment of CNS diseases/disorders, partial response to therapy or treatment failure are frequent, at least in part due to poor compliance, but also genetic variability in the metabolism of psychotropic agents or polypharmacy, which may lead to sub-therapeutic or toxic plasma levels of the drugs, and finally inefficacy of the treatment or adverse/toxic effects. With the aim of improving the treatment, reducing toxic/side effects and patient hospitalisation, Therapeutic Drug Monitoring (TDM) is certainly useful, allowing for a personalisation of the therapy. Reliable analytical methods are required to determine the plasma levels of psychotropic drugs, which are often present at low concentrations (tens or hundreds of nanograms per millilitre). The present PhD Thesis has focused on the development of analytical methods for the determination of CNS drugs in biological fluids, including antidepressants (sertraline and duloxetine), antipsychotics (aripiprazole), antiepileptics (vigabatrin and topiramate) and antiparkinsons (pramipexole). Innovative methods based on liquid chromatography or capillary electrophoresis coupled to diode-array or laser-induced fluorescence detectors have been developed, together with the suitable sample pre-treatment for interference removal and fluorescent labelling in case of LIF detection. All methods have been validated according to official guidelines and applied to the analysis of real samples obtained from patients, resulting suitable for the TDM of psychotropic drugs.
Resumo:
The aspartic protease BACE1 (β-amyloid precursor protein cleaving enzyme, β-secretase) is recognized as one of the most promising targets in the treatment of Alzheimer's disease (AD). The accumulation of β-amyloid peptide (Aβ) in the brain is a major factor in the pathogenesis of AD. Aβ is formed by initial cleavage of β-amyloid precursor protein (APP) by β-secretase, therefore BACE1 inhibition represents one of the therapeutic approaches to control progression of AD, by preventing the abnormal generation of Aβ. For this reason, in the last decade, many research efforts have focused at the identification of new BACE1 inhibitors as drug candidates. Generally, BACE1 inhibitors are grouped into two families: substrate-based inhibitors, designed as peptidomimetic inhibitors, and non-peptidomimetic ones. The research on non-peptidomimetic small molecules BACE1 inhibitors remains the most interesting approach, since these compounds hold an improved bioavailability after systemic administration, due to a good blood-brain barrier permeability in comparison to peptidomimetic inhibitors. Very recently, our research group discovered a new promising lead compound for the treatment of AD, named lipocrine, a hybrid derivative between lipoic acid and the AChE inhibitor (AChEI) tacrine, characterized by a tetrahydroacridinic moiety. Lipocrine is one of the first compounds able to inhibit the catalytic activity of AChE and AChE-induced amyloid-β aggregation and to protect against reactive oxygen species. Due to this interesting profile, lipocrine was also evaluated for BACE1 inhibitory activity, resulting in a potent lead compound for BACE1 inhibition. Starting from this interesting profile, a series of tetrahydroacridine analogues were synthesised varying the chain length between the two fragments. Moreover, following the approach of combining in a single molecule two different pharmacophores, we designed and synthesised different compounds bearing the moieties of known AChEIs (rivastigmine and caproctamine) coupled with lipoic acid, since it was shown that dithiolane group is an important structural feature of lipocrine for the optimal inhibition of BACE1. All the tetrahydroacridines, rivastigmine and caproctamine-based compounds, were evaluated for BACE1 inhibitory activity in a FRET (fluorescence resonance energy transfer) enzymatic assay (test A). With the aim to enhancing the biological activity of the lead compound, we applied the molecular simplification approach to design and synthesize novel heterocyclic compounds related to lipocrine, in which the tetrahydroacridine moiety was replaced by 4-amino-quinoline or 4-amino-quinazoline rings. All the synthesized compounds were also evaluated in a modified FRET enzymatic assay (test B), changing the fluorescent substrate for enzymatic BACE1 cleavage. This test method guided deep structure-activity relationships for BACE1 inhibition on the most promising quinazoline-based derivatives. By varying the substituent on the 2-position of the quinazoline ring and by replacing the lipoic acid residue in lateral chain with different moieties (i.e. trans-ferulic acid, a known antioxidant molecule), a series of quinazoline derivatives were obtained. In order to confirm inhibitory activity of the most active compounds, they were evaluated with a third FRET assay (test C) which, surprisingly, did not confirm the previous good activity profiles. An evaluation study of kinetic parameters of the three assays revealed that method C is endowed with the best specificity and enzymatic efficiency. Biological evaluation of the modified 2,4-diamino-quinazoline derivatives measured through the method C, allow to obtain a new lead compound bearing the trans-ferulic acid residue coupled to 2,4-diamino-quinazoline core endowed with a good BACE1 inhibitory activity (IC50 = 0.8 mM). We reported on the variability of the results in the three different FRET assays that are known to have some disadvantages in term of interference rates that are strongly dependent on compound properties. The observed results variability could be also ascribed to different enzyme origin, varied substrate and different fluorescent groups. The inhibitors should be tested on a parallel screening in order to have a more reliable data prior to be tested into cellular assay. With this aim, preliminary cellular BACE1 inhibition assay carried out on lipocrine confirmed a good cellular activity profile (EC50 = 3.7 mM) strengthening the idea to find a small molecule non-peptidomimetic compound as BACE1 inhibitor. In conclusion, the present study allowed to identify a new lead compound endowed with BACE1 inhibitory activity in submicromolar range. Further lead optimization to the obtained derivative is needed in order to obtain a more potent and a selective BACE1 inhibitor based on 2,4-diamino-quinazoline scaffold. A side project related to the synthesis of novel enzymatic inhibitors of BACE1 in order to explore the pseudopeptidic transition-state isosteres chemistry was carried out during research stage at Università de Montrèal (Canada) in Hanessian's group. The aim of this work has been the synthesis of the δ-aminocyclohexane carboxylic acid motif with stereochemically defined substitution to incorporating such a constrained core in potential BACE1 inhibitors. This fragment, endowed with reduced peptidic character, is not known in the context of peptidomimetic design. In particular, we envisioned an alternative route based on an organocatalytic asymmetric conjugate addition of nitroalkanes to cyclohexenone in presence of D-proline and trans-2,5-dimethylpiperazine. The enantioenriched obtained 3-(α-nitroalkyl)-cyclohexanones were further functionalized to give the corresponding δ-nitroalkyl cyclohexane carboxylic acids. These intermediates were elaborated to the target structures 3-(α-aminoalkyl)-1-cyclohexane carboxylic acids in a new readily accessible way.
Resumo:
Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.
Resumo:
Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.
Resumo:
Drug addiction manifests clinically as compulsive drug seeking, and cravings that can persist and recur even after extended periods of abstinence. The fundamental principle that unites addictive drugs is that each one enhances synaptic DA by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. Our attention has focused on the study of phenomena associated with the consumption of alcohol and heroin. Alcohol has long been considered an unspecific pharmacological agent, recent molecular pharmacology studies have shown that acts on different primary targets. Through gene expression studies conducted recently it has been shown that the classical opioid receptors are differently involved in the consumption of ethanol and, furthermore, the system nociceptin / NOP, included in the family of endogenous opioid system, and both appear able to play a key role in the initiation of alcohol use in rodents. What emerges is that manipulation of the opioid system, nociceptin, may be useful in the treatment of addictions and there are several evidences that support the use of this strategy. The linkage between gene expression alterations and epigenetic modulation in PDYN and PNOC promoters following alcohol treatment confirm the possible chromatin remodeling mechanism already proposed for alcoholism. In the second part of present study, we also investigated alterations in signaling molecules directly associated with MAPK pathway in a unique collection of postmortem brains from heroin abusers. The interest was focused on understanding the effects that prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade and consequently on the transcription factor ELK1, which is regulated by this pathway. We have shown that the activation of ERK1/2 resulting in Elk-1 phosphorylation in striatal neurons supporting the hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK pathway.
Resumo:
Abnormal Hedgehog signaling is associated with human malignancies. Smo, a key player of that signaling, is the most suitable target to inhibit this pathway. To this aim several molecules, antagonists of Smo, have been synthesized, and some of them have started the phase I in clinical trials. Our hospital participated to one of these studies which investigated the oral administration of a new selective inhibitor of Smo (SMOi). To evaluate ex vivo SMOi efficacy and to identify new potential clinical biomarkers of responsiveness, we separated bone marrow CD34+ cells from 5 acute myeloid leukemia (AML), 1 myelofibrosis (MF), 2 blastic phases chronic myeloid leukemia (CML) patients treated with SMOi by immunomagnetic separation, and we analysed their gene expression profile using Affimetrix HG-U133 Plus 2.0 platform. This analysis, showed differential expression after 28 days start of therapy (p-value ≤ 0.05) of 1,197 genes in CML patients and 589 genes in AML patients. This differential expression is related to Hedgehog pathway with a p-value = 0.003 in CML patients and with a p-value = 0.0002 in AML patients, suggesting that SMOi targets specifically this pathway. Among the genes differentially expressed we observed strong up-regulation of Gas1 and Kif27 genes, which may work as biomarkers of responsiveness of SMOi treatment in CML CD34+ cells whereas Hedgehog target genes (such as Smo, Gli1, Gli2, Gli3), Bcl2 and Abca2 were down-regulated, in both AML and CML CD34+ cells. It has been reported that Bcl-2 expression could be correlated with cancer therapy resistance and that Hedgehog signaling modulate ATP-binding (ABC) cassette transporters, whose expression has been correlated with chemoresistance. Moreover we confirmed that in vitro SMOi treatment targets Hedgehog pathway, down-regulate ABC transporters, Abcg2 and Abcb1 genes, and in combination with tyrosine kinase inhibitors (TKIs) could revert the chemoresistance mechanism in K562 TKIs-resistant cell line.
Resumo:
L'indagine condotta, avvalendosi del paradigma della social network analysis, offre una descrizione delle reti di supporto personale e del capitale sociale di un campione di 80 italiani ex post un trattamento terapeutico residenziale di lungo termine per problemi di tossicodipendenza. Dopo aver identificato i profili delle reti di supporto sociale degli intervistati, si è proceduto, in primis, alla misurazione e comparazione delle ego-centered support networks tra soggetti drug free e ricaduti e, successivamente, all'investigazione delle caratteristiche delle reti e delle forme di capitale sociale – closure e brokerage – che contribuiscono al mantenimento dell'astinenza o al rischio di ricaduta nel post-trattamento. Fattori soggettivi, come la discriminazione pubblica percepita e l'attitudine al lavoro, sono stati inoltre esplorati al fine di investigare la loro correlazione con la condotta di reiterazione nell'uso di sostanze. Dai risultati dello studio emerge che un più basso rischio di ricaduta è positivamente associato ad una maggiore attitudine al lavoro, ad una minore percezione di discriminazione da parte della società, all'avere membri di supporto con un più alto status socio-economico e che mobilitano risorse reputazionali e, infine, all'avere reti più eterogenee nell'occupazione e caratterizzate da più elevati livelli di reciprocità. Inoltre, il capitale sociale di tipo brokerage contribuisce al mantenimento dell'astinenza in quanto garantisce l'accesso del soggetto ad informazioni meno omogenee e la sua esposizione a opportunità più numerose e differenziate. I risultati dello studio, pertanto, dimostrano l'importante ruolo delle personal support networks nel prevenire o ridurre il rischio di ricaduta nel post-trattamento, in linea con precedenti ricerche che suggeriscono la loro incorporazione nei programmi terapeutici per tossicodipendenti.
Resumo:
Introduction: Among all cancer types leukemia represents the leading cause of cancer death in man younger than 40 years. Single-target drug therapy has generally been highly ineffective in treating complex diseases such as cancer. A growing interest has been directed toward multi-target drugs able to hit multiple targets. In this context, plant products, based on their intrinsic complexity, could represent an interesting and promising approach. Aim of the research followed during my PhD was to indentify and study novel natural compounds for the treatment of acute leukemias. Two potential multi-target drugs were identified in Hemidesmus indicus and piperlongumine. Methodology/Principal Findings: A variety of cellular assays and flow cytometry were performed on different cell lines. We demonstrated that Hemidesmus modulates many components of intracellular signaling pathways involved in cell viability and proliferation and alters gene and protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential, raise of [Ca2+]i, inhibition of Mcl-1, increasing Bax/Bcl-2 ratio, and ROS formation. Moreover, we proved that the decoction causes differentiation of HL-60 and regulates angiogenesis of HUVECs in hypoxia and normoxia, by the inhibition of new vessel formation and the processes of migration/invasion. Clinically relevant observations are that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemia (AML) patients. Moreover, both Hemidesmus and piperlongumine showed a selective action toward leukemic stem cell (LSC). Conclusions: Our results indicate the molecular basis of the anti-leukemic effects of Hemidesmus indicus and indentify the mitochondrial pathways, [Ca2+]i, cytodifferentiation and angiogenesis inhibition as crucial actors in its anticancer activity. The ability to selectively hit LSC showed by Hemidesmus and piperlongumine enriched the knowledge of their anti-leukemic activity. On these bases, we conclude that Hemidesmus and piperlongumine can represent a valuable strategy in the anticancer pharmacology.
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.