19 resultados para Direct methanol fuel cell

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrocatalysts play a significant role in the processes of electrochemical energy conversion. This thesis focuses on the preparation of carbon-supported nanomaterials and their application as electrocatalysts for alkaline water electrocatalysis and fuel cell. A general synthetic route was developed, i.e., species intercalate into carbon layers of graphite forming graphite intercalation compound, followed by dispersion producing graphenide solution, which then as reduction agent reacts with different metal sources generating the final materials. The first metal precursor used was non-noble metal iron salt, which generated iron (oxide) nanoparticles finely dispersed on carbon layers in the final composite materials. Meanwhile, graphite starting materials differing in carbon layer size were utilized, which would diversify corresponding graphenide solutions, and further produce various nanomaterials. The characterization results showed that iron (oxide) nanoparticles varying in size were obtained, and the size was determined by the starting graphite material. It was found that they were electrocatalytically active for oxygen reactions. In particular, the one with small iron (oxide) nanoparticles showed excellent electrocatalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Afterwards, the metal precursor was tuned from non-noble metal salt to noble metal salt. It was confirmed that carbon-supported Rh, Pt, and RhPt (oxide) nanoparticle composite materials were also successfully obtained from the reaction between graphenide solution and corresponding noble metal precursor. The electrochemical measurements showed that the prepared noble metal-based nanomaterials were quite effective for hydrogen evolution reaction (HER) electrocatalysis, and the Rh sample could also display excellent electrocatalytic property towards OER. Moreover, by this synthetic approach carbon-supported noble metal Pt and non-noble metal nickel (Ni) composite material was also prepared. Therefore, the utilization efficiency of noble metal could be improved. The prepared NiPt sample displayed a property close to benchmark HER electrocatalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’attuale condizione che caratterizza il settore energetico richiede un necessario processo di riconversione che, oltre a favorire il risparmio energetico, riduca la dipendenza dai combustibili fossili ed accresca l’impiego di fonti energetiche rinnovabili, dando un contributo fondamentale alla riduzione delle emissioni di gas serra come diversi accordi internazionali richiedono. Si rende pertanto necessario accelerare i processi che da alcuni anni stanno favorendo l’utilizzo di energia da fonti rinnovabili. Tra queste, le fonti legate ai processi di trattamento biologico dei reflui stanno avendo un interessante sviluppo. Esistono numerosi processi biologici che consentono la produzione di energia in maniera indiretta, quali ad esempio i processi di digestione anaerobica finalizzati alla produzione di biogas e/o produzione biologica di idrogeno. In tale contesto si inserisce la tecnologia delle Microbial Fuel Cell, che consente la produzione diretta di energia elettrica, finalizzata al recupero energetico inteso al miglioramento dell’efficienza energetica e alla riduzione dei costi d’esercizio di impianti di trattamento biologico dei reflui. Il presente lavoro di Tesi di Dottorato sperimentale, svoltosi in collaborazione al laboratorio PROT.-IDR. della sede ENEA di Bologna, riporta i risultati dell’attività di ricerca condotta su una MFC (Microbial Fuel Cell) a doppio stadio biologico per il trattamento di reflui ad elevato carico organico e produzione continua di energia elettrica. E’ stata provata l’applicabilità della MFC con entrambi i comparti biotici utilizzando elettrodi di grafite non trattata ottenendo, con un carico organico in ingresso di circa 9 gd-1, valori di potenza massima prodotta che si attestano su 74 mWm-2, corrente elettrica massima generata di 175 mAm-2 ad una tensione di 421 mV, ed una conversione di COD in elettricità pari a 1,2 gCODm-2d-1. I risultati sono stati molto positivi per quanto riguarda le prestazioni depurative ottenute dalla MFC. L’efficienza di depurazione misurata ha raggiunto un valore massimo del 98% di rimozione del COD in ingresso, mentre e la concentrazione di azoto ammoniacale nell’effluente raccolto all’uscita del sedimentatore è sempre stata inferiore a 1 mgN-NH4+l-1. Tra gli obiettivi posti all’inizio della sperimentazione si è rivelata di notevole interesse la valutazione del possibile utilizzo della MFC come sistema per il monitoraggio on-line del COD e degli acidi grassi volatili (VFA) prodotti all’interno di un digestore anaerobico, attraverso la definizione di una correlazione tra i dati elettrici registrati in continuo e le concentrazioni di CODanaer e VFA misurate in diversi periodi della sperimentazione. L’analisi DGGE della biomassa catodica ha fornito uno strumento analitico utile allo studio della diversità della comunità microbica sospesa ed adesa al catodo e ha confermato la forte similarità delle specie batteriche riconosciute nei campioni analizzati. In particolare, le bande di sequenziamento ottenute sono affiliate ai gruppi batterici Firmicutes, -Proteobacteria,  -Proteobacteria, -Proteobacteria e Bacteroidetes. Da quanto emerso dalla sperimentazione condotta si può pertanto concludere che ad oggi le MFC sono in fase di evoluzione rispetto ai primi prototipi utilizzati per lo studio delle comunità microbiali e per la comprensione dei meccanismi di trasferimento elettronico. Sfruttarne la potenza prodotta in maniera commerciale diviene una grande sfida per il futuro, ed è opinione comune che le prime applicazioni pratiche delle MFC saranno come fonte di recupero energetico per i dispositivi utilizzati per il monitoraggio dell’ambiente e per il trattamento delle acque reflue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the micro-CHP (Combined Heat and Power) energy systems and the Distributed Generation (GD) concept, an Integrated Energy System (IES) able to meet the energy and thermal requirements of specific users, using different types of fuel to feed several micro-CHP energy sources, with the integration of electric generators of renewable energy sources (RES), electrical and thermal storage systems and the control system was conceived and built. A 5 kWel Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been studied. Using experimental data obtained from various measurement campaign, the electrical and CHP PEMFC system performance have been determinate. The analysis of the effect of the water management of the anodic exhaust at variable FC loads has been carried out, and the purge process programming logic was optimized, leading also to the determination of the optimal flooding times by varying the AC FC power delivered by the cell. Furthermore, the degradation mechanisms of the PEMFC system, in particular due to the flooding of the anodic side, have been assessed using an algorithm that considers the FC like a black box, and it is able to determine the amount of not-reacted H2 and, therefore, the causes which produce that. Using experimental data that cover a two-year time span, the ageing suffered by the FC system has been tested and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio della deidrogenazione catalitica di idrocarburi affronta uno dei problemi principali per l'applicazione delle fuel cells in aeromobili. La conversione di miscele di idrocarburi in H2 può essere eseguita in loco, evitando le difficoltà di stoccaggio dell'idrogeno: l'H2 prodotto è privo di CO e CO2 e può essere alimentato direttamente alle celle a combustibile per dare energia ai sistemi ausiliari, mentre i prodotti deidrogenati, mantenendo le loro originali caratteristiche possono essere riutilizzati come carburante. In questo un lavoro è stato effettuato uno studio approfondito sulla deidrogenazione parziale (PDH) di diverse miscele di idrocarburi e carburante avio JetA1 desolforato utilizzando Pt-Sn/Al2O3, con l'obiettivo di mettere in luce i principali parametri (condizioni di reazione e composizione di catalizzatore) coinvolti nel processo di deidrogenazione. Inoltre, la PDH di miscele idrocarburiche e di Jet-A1 ha evidenziato che il problema principale in questa reazione è la disattivazione del catalizzatore, a causa della formazione di residui carboniosi e dell’avvelenamento da zolfo. Il meccanismo di disattivazione da residui carboniosi è stato studiato a fondo, essendo uno dei principali fattori che influenzano la vita del catalizzatore e di conseguenza l'applicabilità processo. Alimentando molecole modello separatamente, è stato possibile discriminare le classi di composti che sono coinvolti principalmente nella produzione di H2 o nell’avvelenamento del catalizzatore. Una riduzione parziale della velocità di disattivazione è stata ottenuta modulando l'acidità del catalizzatore al fine di ottimizzare le condizioni di reazione. I catalizzatori Pt-Sn modificati hanno mostrato ottimi risultati in termini di attività, ma soffrono di una disattivazione rapida in presenza di zolfo. Così, la sfida finale di questa ricerca era sviluppare un sistema catalitico in grado di lavorare in condizioni reali con carburante ad alto tenore di zolfo, in questo campo sono stati studiati due nuove classi di materiali: Ni e Co fosfuri supportati su SiO2 e catalizzatori Pd-Pt/Al2O3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure food safety and to prevent food-borne illnesses, rapid and accurate detection of pathogenic agents is essential. It has already been demonstrated that shotgun metagenomic sequencing can be used to detect pathogens and their antibiotic resistance genes in food. In the studies presented in this thesis, the application shotgun metagenomic sequencing has been applied to investigate both the microbiome and resistome of foods of animal origin in order to assess advantages and disadvantages of shotgun metagenomic sequencing in comparison to the cultural methods. In the first study, it has been shown that shotgun metagenomics can be applied to detect microorganisms experimentally spiked in cold-smoked salmon. Nevertheless, a direct correlation between cell concentration of each spiked microorganism and number of corresponding reads cannot be established yet. In the second and third studies, the microbiomes and resistomes characterizing caeca and the corresponding carcasses of the birds reared in the conventional and antibiotic free farms were compared. The results highlighted the need to reduce sources of microbial contamination and antimicrobial resistance not only at the farm level but also at the post-harvest one. In the fourth study, it has been demonstrated that testing a single aliquot of a food homogenate is representative of the whole homogenate because biological replicates displayed overlapping taxonomic and functional composition. All in all, the results obtained confirmed that the application of shotgun metagenomic sequencing represents a powerful tool that can be used in the identification of both spoilage and pathogenic microorganism, and their resistome in foods of animal origin. However, a robust relationship between sequence read abundance and concentration of colony-forming unit must be still established.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to study the effects of extremely low frequency (ELF) electromagnetic magnetic fields on potassium currents in neural cell lines ( Neuroblastoma SK-N-BE ), using the whole-cell Patch Clamp technique. Such technique is a sophisticated tool capable to investigate the electrophysiological activity at a single cell, and even at single channel level. The total potassium ion currents through the cell membrane was measured while exposing the cells to a combination of static (DC) and alternate (AC) magnetic fields according to the prediction of the so-called ‘ Ion Resonance Hypothesis ’. For this purpose we have designed and fabricated a magnetic field exposure system reaching a good compromise between magnetic field homogeneity and accessibility to the biological sample under the microscope. The magnetic field exposure system consists of three large orthogonal pairs of square coils surrounding the patch clamp set up and connected to the signal generation unit, able to generate different combinations of static and/or alternate magnetic fields. Such system was characterized in term of field distribution and uniformity through computation and direct field measurements. No statistically significant changes in the potassium ion currents through cell membrane were reveled when the cells were exposed to AC/DC magnetic field combination according to the afore mentioned ‘Ion Resonance Hypothesis’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In gasoline Port Fuel Injection (PFI) and Direct Injection (GDI) internal combustion engines, the liquid fuel might be injected into a gaseous ambient in a superheated state, resulting in flash boiling of the fuel. The importance to investigate and predict such a process is due to the influence it has on the liquid fuel atomization and vaporization and thus on combustion, with direct implications on engine performances and exhaust gas emissions. The topic of the present PhD research involves the numerical analysis of the behaviour of the superheated fuel during the injection process, in high pressure injection systems like the ones equipping GDI engines. Particular emphasis is on the investigation of the effects of the fuel superheating degree on atomization dynamics and spray characteristics. The present work is a look at the flash evaporation and flash boiling modeling, from an engineering point of view, addressed to keep the complex physics involved as simple as possible, however capturing the main characteristics of a superheated fuel injection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few years, the switch towards renewable sources for energy production is considered as necessary for the future sustainability of the world environment. Hydrogen is one of the most promising energy vectors for the stocking of low density renewable sources such as wind, biomasses and sun. The production of hydrogen by the steam-iron process could be one of the most versatile approaches useful for the employment of different reducing bio-based fuels. The steam iron process is a two-step chemical looping reaction based (i) on the reduction of an iron-based oxide with an organic compound followed by (ii) a reoxidation of the reduced solid material by water, which lead to the production of hydrogen. The overall reaction is the water oxidation of the organic fuel (gasification or reforming processes) but the inherent separation of the two semireactions allows the production of carbon-free hydrogen. In this thesis, steam-iron cycle with methanol is proposed and three different oxides with the generic formula AFe2O4 (A=Co,Ni,Fe) are compared in order to understand how the chemical properties and the structural differences can affect the productivity of the overall process. The modifications occurred in used samples are deeply investigated by the analysis of used materials. A specific study on CoFe2O4-based process using both classical and in-situ/ex-situ analysis is reported employing many characterization techniques such as FTIR spectroscopy, TEM, XRD, XPS, BET, TPR and Mössbauer spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supercritical Emulsion Extraction technology (SEE-C) was proposed for the production of poly-lactic-co-glycolic acid microcarriers. SEE-C operating parameters as pressure, temperature and flow rate ratios were analyzed and the process performance was optimized in terms of size distribution and encapsulation efficiency. Microdevices loaded with bovine serum insulin were produced with different sizes (2 and 3 µm) or insulin charges (3 and 6 mg/g) and with an encapsulation efficiency of 60%. The microcarriers were characterized in terms of insulin release profile in two different media (PBS and DMEM) and the diffusion and degradation constants were also estimated by using a mathematical model. PLGA microdevices were also used in a cultivation of embryonic ventricular myoblasts (cell line H9c2 obtained from rat) in a FBS serum free medium to monitor cell viability and growth in dependence of insulin released. Good cell viability and growth were observed on 3 µm microdevices loaded with 3 mg/g of insulin. PLGA microspheres loaded with growth factors (GFs) were charged into alginate scaffold with human Mesenchimal Steam Cells (hMSC) for bone tissue engineering with the aim of monitoring the effect of the local release of these signals on cells differentiation. These “living” 3D scaffolds were incubated in a direct perfusion tubular bioreactor to enhance nutrient transport and exposing the cells to a given shear stress. Different GFs such as, h-VEGF, h-BMP2 and a mix of two (ratio 1:1) were loaded and alginate beads were recovered from dynamic (tubular perfusion system bioreactor) and static culture at different time points (1st, 7th, 21st days) for the analytical assays such as, live/dead; alkaline phosphatase; osteocalcin; osteopontin and Van Kossa Immunoassay. The immunoassay confirmed always a better cells differentiation in the bioreactor with respect to the static culture and revealed a great influence of the BMP-2 released in the scaffold on cell differentiation.