4 resultados para Dirac brackets
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Until recently the debate on the ontology of spacetime had only a philosophical significance, since, from a physical point of view, General Relativity has been made "immune" to the consequences of the "Hole Argument" simply by reducing the subject to the assertion that solutions of Einstein equations which are mathematically different and related by an active diffeomorfism are physically equivalent. From a technical point of view, the natural reading of the consequences of the "Hole Argument” has always been to go further and say that the mathematical representation of spacetime in General Relativity inevitably contains a “superfluous structure” brought to light by the gauge freedom of the theory. This position of apparent split between the philosophical outcome and the physical one has been corrected thanks to a meticulous and complicated formal analysis of the theory in a fundamental and recent (2006) work by Luca Lusanna and Massimo Pauri entitled “Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the Hole Argument and physical individuation of point-events”. The main result of this article is that of having shown how, from a physical point of view, point-events of Einstein empty spacetime, in a particular class of models considered by them, are literally identifiable with the autonomous degrees of freedom of the gravitational field (the Dirac observables, DO). In the light of philosophical considerations based on realism assumptions of the theories and entities, the two authors then conclude by saying that spacetime point-events have a degree of "weak objectivity", since they, depending on a NIF (non-inertial frame), unlike the points of the homogeneous newtonian space, are plunged in a rich and complex non-local holistic structure provided by the “ontic part” of the metric field. Therefore according to the complex structure of spacetime that General Relativity highlights and within the declared limits of a methodology based on a Galilean scientific representation, we can certainly assert that spacetime has got "elements of reality", but the inevitably relational elements that are in the physical detection of point-events in the vacuum of matter (highlighted by the “ontic part” of the metric field, the DO) are closely dependent on the choice of the global spatiotemporal laboratory where the dynamics is expressed (NIF). According to the two authors, a peculiar kind of structuralism takes shape: the point structuralism, with common features both of the absolutist and substantival tradition and of the relationalist one. The intention of this thesis is that of proposing a method of approaching the problem that is, at least at the beginning, independent from the previous ones, that is to propose an approach based on the possibility of describing the gravitational field at three distinct levels. In other words, keeping the results achieved by the work of Lusanna and Pauri in mind and following their underlying philosophical assumptions, we intend to partially converge to their structuralist approach, but starting from what we believe is the "foundational peculiarity" of General Relativity, which is that characteristic inherent in the elements that constitute its formal structure: its essentially geometric nature as a theory considered regardless of the empirical necessity of the measure theory. Observing the theory of General Relativity from this perspective, we can find a "triple modality" for describing the gravitational field that is essentially based on a geometric interpretation of the spacetime structure. The gravitational field is now "visible" no longer in terms of its autonomous degrees of freedom (the DO), which, in fact, do not have a tensorial and, therefore, nor geometric nature, but it is analyzable through three levels: a first one, called the potential level (which the theory identifies with the components of the metric tensor), a second one, known as the connections level (which in the theory determine the forces acting on the mass and, as such, offer a level of description related to the one that the newtonian gravitation provides in terms of components of the gravitational field) and, finally, a third level, that of the Riemann tensor, which is peculiar to General Relativity only. Focusing from the beginning on what is called the "third level" seems to present immediately a first advantage: to lead directly to a description of spacetime properties in terms of gauge-invariant quantites, which allows to "short circuit" the long path that, in the treatises analyzed, leads to identify the "ontic part” of the metric field. It is then shown how to this last level it is possible to establish a “primitive level of objectivity” of spacetime in terms of the effects that matter exercises in extended domains of spacetime geometrical structure; these effects are described by invariants of the Riemann tensor, in particular of its irreducible part: the Weyl tensor. The convergence towards the affirmation by Lusanna and Pauri that the existence of a holistic, non-local and relational structure from which the properties quantitatively identified of point-events depend (in addition to their own intrinsic detection), even if it is obtained from different considerations, is realized, in our opinion, in the assignment of a crucial role to the degree of curvature of spacetime that is defined by the Weyl tensor even in the case of empty spacetimes (as in the analysis conducted by Lusanna and Pauri). In the end, matter, regarded as the physical counterpart of spacetime curvature, whose expression is the Weyl tensor, changes the value of this tensor even in spacetimes without matter. In this way, going back to the approach of Lusanna and Pauri, it affects the DOs evolution and, consequently, the physical identification of point-events (as our authors claim). In conclusion, we think that it is possible to see the holistic, relational, and non-local structure of spacetime also through the "behavior" of the Weyl tensor in terms of the Riemann tensor. This "behavior" that leads to geometrical effects of curvature is characterized from the beginning by the fact that it concerns extensive domains of the manifold (although it should be pointed out that the values of the Weyl tensor change from point to point) by virtue of the fact that the action of matter elsewhere indefinitely acts. Finally, we think that the characteristic relationality of spacetime structure should be identified in this "primitive level of organization" of spacetime.
Resumo:
This thesis analyzes theoretically and computationally the phenomenon of partial ionization of the substitutional dopants in Silicon Carbide at thermal equilibrium. It is based on the solution of the charge neutrality equation and takes into account the following phenomena: several energy levels in the bandgap; Fermi-Dirac statistics for free carriers; screening effects on the dopant ionization energies; the formation of impurity bands. A self-consistent model and a corresponding simulation software have been realized. A preliminary comparison of our calculations with existing experimental results is carried out.
Resumo:
One of the most important problems in inertial confinement fusion is how to find a way to mitigate the onset of the Rayleigh-Taylor instability which arises in the ablation front during the compression. In this thesis it is studied in detail the possibility of using for such a purpose the well-known mechanism of dynamic stabilization, already applied to other dynamical systems such as the inverted pendulum. In this context, a periodic acceleration superposed to the background gravity generates a vertical vibration of the ablation front itself. The effects of different driving modulations (Dirac deltas and square waves) are analyzed from a theoretical point of view, with a focus on stabilization of ion beam driven ablation fronts, and a comparison is made, in order to look for optimization.
Resumo:
In base ad una recensione esaustiva dei riferimenti alla musica e al sonoro nella produzione filosofica di Gilles Deleuze e Félix Guattari, la presente ricerca s’incentra sulla posizione che il pensiero musicale di John Cage occupa in alcuni testi deleuziani. Il primo capitolo tratta del periodo creativo di Cage fra il 1939 e il 1952, focalizzandosi su due aspetti principali: la struttura micro-macrocosmica che contraddistingue i suoi primi lavori, e i quattro elementi che in questo momento sintetizzano per Cage la composizione musicale. Questi ultimi sono considerati in riferimento alla teoria della doppia articolazione che Deleuze e Guattari riprendono da Hjelmslev; entrambi gli aspetti rimandano al sistema degli strati e della stratificazione esposta su Mille piani. Il secondo capitolo analizza la musica dei decenni centrali della produzione cagiana alla luce del luogo in Mille piani dove Cage è messo in rapporto al concetto di “piano fisso sonoro”. Un’attenzione particolare è posta al modo in cui Cage concepisce il rapporto fra durata e materiali sonori, e al grado variabile in cui sono presenti il caso e l’indeterminazione. Le composizioni del periodo in questione sono inoltre viste in riferimento al concetto deleuzo-guattariano di cartografia, e nelle loro implicazioni per il tempo musicale. L’ultimo quindicennio della produzione di Cage è considerata attraverso il concetto di rizoma inteso come teoria delle molteplicità. In primo luogo è esaminata la partitura di Sylvano Bussotti che figura all’inizio di Mille piani; in seguito, i lavori testuali e musicali di Cage sono considerati secondo le procedure compositive cagiane del mesostico, delle parentesi di tempo che concorrono a formare una struttura variabile, e dell’armonia anarchica dell’ultimo Cage.