6 resultados para Dinoflagellates, calcareous, wall thickness
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background-Amyloidotic cardiomyopathy (AC) can mimic true left ventricular hypertrophy (LVH), including hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD). We assessed the diagnostic value of combined electrocardiographic/echocardiographic indexes to identify AC among patients with increased echocardiographic LV wall thickness due to either different etiologies of amyloidosis or HCM or HHD. Method-First, we studied 469 consecutive patients: 262 with biopsy/genetically proven AC (with either AL or transthyretin (TTR)-related amyloidosis); 106 with HCM; 101 with HHD. We compared the diagnostic performance of: low QRS voltage, symmetric LVH, low QRS voltage plus interventricular septal thickness >1.98 cm, Sokolow index divided by the cross-sectional area of LV wall, Sokolow index divided by body surface area indexed LV mass (LVMI), Sokolow index divided by LV wall thickness, Sokolow index divided by (LV wall/height^2.7); peripheral QRS score divided by LVMI, Peripheral QRS score divided by LV wall thickness, Peripheral QRS score divided by LV wall thickness indexed to height^2.7, total QRS score divided by LVMI, total QRS score divided by LV wall thickness; total QRS score divided by (LV wall/height^2.7). We tested each criterion, separately in males and females, in the following settings: AC vs. HCM+HHD; AC vs. HCM; AL vs. HCM+HHD; AL vs. HCM; TTR vs. HCM+HHD; TTR vs. HCM. Results-Low QRS voltage showed high specificity but low sensitivity for the identification of AC. All the combined indexes had a higher diagnostic accuracy, being total QRS score divided by LV wall thickness or by LVMI associated with the best performances and the largest areas under the ROC curve. These results were validated in 298 consecutive patients with AC, HCM or HHD. Conclusions-In patients with increased LV wall thickness, a combined ECG/ echocardiogram analysis provides accurate indexes to non-invasively identify AC. Total QRS score divided by LVMI or LV wall thickness offers the best diagnostic performance.
Resumo:
Background Decreased exercise capacity, and reduction in peak oxygen uptake are present in most patients affected by hypertrophic cardiomyopathy (HCM) . In addition an abnormal blood pressure response during a maximal exercise test was seen to be associated with high risk for sudden cardiac death in adult patients affected by HCM. Therefore exercise test (CPET) has become an important part of the evaluation of the HCM patients, but data on its role in patients with HCM in the pediatric age are quite limited. Methods and results Between 2004 and 2010, using CPET and echocardiography, we studied 68 children (mean age 13.9 ± 2 years) with HCM. The exercise test was completed by all the patients without adverse complications. The mean value of achieved VO2 max was 31.4 ± 8.3 mL/Kg/min which corresponded to 77.5 ± 16.9 % of predicted range. 51 patients (75%) reached a subnormal value of VO2max. On univariate analysis the achieved VO2 as percentage of predicted and the peak exercise systolic blood pressure (BP) Z score were inversely associated with max left ventricle (LV) wall thickness, with E/Ea ratio, and directly related with Ea and Sa wave velocities No association was found with the LV outflow tract gradient. During a mean follow up of 2.16 ± 1.7 years 9 patients reached the defined clinical end point of death, transplantation, implanted cardioverter defibrillator (ICD) shock, ICD implantation for secondary prevention or myectomy. Patients with peak VO2 < 52% or with peak systolic BP Z score < -5.8 had lower event free survival at follow up. Conclusions Exercise capacity is decreased in patients with HCM in pediatric age and global ventricular function seems being the most important determinant of exercise capacity in these patients. CPET seems to play an important role in prognostic stratification of children affected by HCM.
Resumo:
Lo scopo di questo studio è di valutare il significato prognostico dell'elettrocardiogramma standard in un'ampia casistica di pazienti affetti da cardiomiopatia ipertrofica. In questo studio multicentrico sono stati considerati 841 pazienti con cardiomiopatia ipertrofica (66% uomini, età media 48±17 anni) per un follow-up di 7.1±7.1 anni, per ognuno è stato analizzato il primo elettrocardiogramma disponibile. I risultati hanno dimostrato come fattori indipendentemente correlati a morte cardiaca improvvisa la sincope inspiegata (p 0.004), il sopraslivellamento del tratto ST e/o la presenza di onde T positive giganti (p 0.048), la durata del QRS >= 120 ms (p 0.017). Sono stati costruiti due modelli per predire il rischio di morte improvvisa: il primo basato sui fattori di rischio universalmente riconosciuti (spessore parietale >= 30 mm, tachicardie ventricolari non sostenute all'ECG Holter 24 ore, sincope e storia familiare di morte improvvisa) e il secondo con l'aggiunta delle variabili sopraslivellamento del tratto ST/onde T positive giganti e durata del QRS >= 120 ms. Entrambi i modelli stratificano i pazienti in base al numero dei fattori di rischio, ma il secondo modello risulta avere un valore predittivo maggiore (chi-square da 12 a 22, p 0.002). In conclusione nella cardiomiopatia ipertrofica l'elettrocardiogramma standard risulta avere un valore prognostico e migliora l'attuale modello di stratificazione per il rischio di morte improvvisa.
Resumo:
Il presente lavoro di tesi ha riguardato una riformulazione teorica, una modellazione numerica e una serie di applicazioni della Generalized Beam Theory per lo studio dei profili in parete sottile con particolare riguardo ai profili in acciaio formati a freddo. In particolare, in questo lavoro è proposta una riscrittura della cinematica GBT che introduce in una forma originale la deformabilità a taglio della sezione. Tale formulazione consente di conservare il formato della GBT classica e introducendo uno spostamento di warping variabile lungo lo spessore della generica parete della sezione trasversale, garantisce perfetta coerenza tra la componente flessionale e tagliante della trave. E' mostrato, come tale riscrittura consente in maniera agevole di ricondursi alle teorie classiche di trave, anche deformabili a taglio. Inoltre, in tale contesto, è stata messa a punto una procedura di ricostruzione dello sforzo tridimensionale in grado ricostruire la parte reattiva delle componenti di tensioni dovuta al vincolamento interno proprio di un modello a cinematica ridotta. Sulla base di tali strumenti, è stato quindi proposto un approccio progettuale dedicato ai profili in classe 4, definito ESA (Embedded Stability Analysis), in grado di svolgere le verifiche coerentemente con quanto prescritto dalle normative vigenti. Viene infine presentata una procedura numerica per la progettazione di sistemi di copertura formati a freddo. Tale procedura permette di effettuare in pochi semplici passi il progetto dell'arcareccio e dei dettagli costruttivi relativi alla copertura.
Resumo:
In this work, the Generalized Beam Theory (GBT) is used as the main tool to analyze the mechanics of thin-walled beams. After an introduction to the subject and a quick review of some of the most well-known approaches to describe the behaviour of thin-walled beams, a novel formulation of the GBT is presented. This formulation contains the classic shear-deformable GBT available in the literature and contributes an additional description of cross-section warping that is variable along the wall thickness besides along the wall midline. Shear deformation is introduced in such a way that the classical shear strain components of the Timoshenko beam theory are recovered exactly. According to the new kinematics proposed, a reviewed form of the cross-section analysis procedure is devised, based on a unique modal decomposition. Later, a procedure for a posteriori reconstruction of all the three-dimensional stress components in the finite element analysis of thin-walled beams using the GBT is presented. The reconstruction is simple and based on the use of three-dimensional equilibrium equations and of the RCP procedure. Finally, once the stress reconstruction procedure is presented, a study of several existing issues on the constitutive relations in the GBT is carried out. Specifically, a constitutive law based on mirroring the kinematic constraints of the GBT model into a specific stress field assumption is proposed. It is shown that this method is equally valid for isotropic and orthotropic beams and coincides with the conventional GBT approach available in the literature. Later on, an analogous procedure is presented for the case of laminated beams. Lastly, as a way to improve an inherently poor description of shear deformability in the GBT, the introduction of shear correction factors is proposed. Throughout this work, numerous examples are provided to determine the validity of all the proposed contributions to the field.
Resumo:
Background: Hypertrophic cardiomyopathy (HCM) is a common cardiac disease caused by a range of genetic and acquired disorders. The most common cause is genetic variation in sarcomeric proteins genes. Current ESC guidelines suggest that particular clinical features (‘red flags’) assist in differential diagnosis. Aims: To test the hypothesis that left ventricular (LV) systolic dysfunction in the presence of increased wall thickness is an age-specific ‘red flag’ for aetiological diagnosis and to determine long-term outcomes in adult patients with various types of HCM. Methods: A cohort of 1697 adult patients with HCM followed at two European referral centres were studied. Aetiological diagnosis was based on clinical examination, cardiac imaging and targeted genetic and biochemical testing. Main outcomes were: all-cause mortality or heart transplantation (HTx) and heart failure (HF) related-death. All-cause mortality included sudden cardiac death or equivalents, HF and stroke-related death and non-cardiovascular death. Results: Prevalence of different aetiologies was as follows: sarcomeric HCM 1288 (76%); AL amyloidosis 115 (7%), hereditary TTR amyloidosis 86 (5%), Anderson-Fabry disease 85 (5%), wild-type TTR amyloidosis 48 (3%), Noonan syndrome 15 (0.9%), mitochondrial disease 23 (1%), Friedreich’s ataxia 11 (0.6%), glycogen storage disease 16 (0.9%), LEOPARD syndrome 7 (0.4%), FHL1 2 (0.1%) and CPT II deficiency 1 (0.1%). Systolic dysfunction at first evaluation was significantly more frequent in phenocopies than sarcomeric HCM [105/409 (26%) versus 40/1288 (3%), (p<0.0001)]. All-cause mortality/HTx and HF-related death were higher in phenocopies compared to sarcomeric HCM (p<0.001, respectively). When considering specific aetiologies, all-cause mortality and HF-related death were higher in cardiac amyloidosis (p<0.001, respectively). Conclusion: Systolic dysfunction at first evaluation is more common in phenocopies compared to sarcomeric HCM representing an age-specific ‘red flag’ for differential diagnosis. Long-term prognosis was more severe in phenocopies compared to sarcomeric HCM and when comparing specific aetiologies, cardiac amyloidosis showed the worse outcomes.