4 resultados para Diffuse coplanar surface barrier discharge

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical investigation of dielectric barrier discharge aimed to simulate the electro hydro dynamic interaction is presented. A discharge drift diffusive model according to the Townsend avalanche is described and used to duplicate the plasma kinetics of a DBD actuator. The discharge characteristics dependence upon dielectric material and applied voltage are simulated and the EHD force field according to a simplified approach is presented and discussed. The coupling of DBD results with a fluid dynamic code is also shown. Finally, a new non invasive diagnostic technique for EHD interaction based on Schlieren imaging is computationally validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of plasma technologies is growing both in the academic and in the industrial fields. Nowadays, a great interest is focused in plasma applications in aeronautics and astronautics domains. Plasma actuators based on the Magneto-Hydro-Dynamic (MHD) and Electro- Hydro-Dynamic (EHD) interactions are potentially able to suitably modify the fluid-dynamics characteristics around a flying body without utilizing moving parts. This could lead to the control of an aircraft with negligible response time, more reliability and improvements of the performance. In order to study the aforementioned interactions, a series of experiments and a wide number of diagnostic techniques have been utilized. The EHD interaction, realized by means of a Dielectric Barrier Discharge (DBD) actuator, and its impact on the boundary layer have been evaluated by means of two different experiments. In the first one a three phase multi-electrode flat panel actuator is used. Different external flow velocities (from 1 to 20m/s) and different values of the supplied voltage and frequency have been considered. Moreover a change of the phase sequence has been done to verify the influence of the electric field existing between successive phases. Measurements of the induced speed had shown the effect of the supply voltage and the frequency, and the phase order in the momentum transfer phenomenon. Gains in velocity, inside the boundary layer, of about 5m/s have been obtained. Spectroscopic measurements allowed to determine the rotational and the vibrational temperature of the plasma which lie in the range of 320 ÷ 440°K and of 3000 ÷ 3900°K respectively. A deviation from thermodynamic equilibrium had been found. The second EHD experiment is realized on a single electrode pair DBD actuator driven by nano-pulses superimposed to a DC or an AC bias. This new supply system separates the plasma formation mechanism from the acceleration action on the fluid, leading to an higher degree of the control of the process. Both the voltage and the frequency of the nano-pulses and the amplitude and the waveform of the bias have been varied during the experiment. Plasma jets and vortex behavior had been observed by means of fast Schlieren imaging. This allowed a deeper understanding of the EHD interaction process. A velocity increase in the boundary layer of about 2m/s had been measured. Thrust measurements have been performed by means of a scales and compared with experimental data reported in the literature. For similar voltage amplitudes thrust larger than those of the literature, had been observed. Surface charge measurements led to realize a modified DBD actuator able to obtain similar performances when compared with that of other experiments. However in this case a DC bias replacing the AC bias had been used. MHD interaction experiments had been carried out in a hypersonic wind tunnel in argon with a flow of Mach 6. Before the MHD experiments a thermal, fluid-dynamic and plasma characterization of the hypersonic argon plasma flow have been done. The electron temperature and the electron number density had been determined by means of emission spectroscopy and microwave absorption measurements. A deviation from thermodynamic equilibrium had been observed. The electron number density showed to be frozen at the stagnation region condition in the expansion through the nozzle. MHD experiments have been performed using two axial symmetric test bodies. Similar magnetic configurations were used. Permanent magnets inserted into the test body allowed to generate inside the plasma azimuthal currents around the conical shape of the body. These Faraday currents are responsible of the MHD body force which acts against the flow. The MHD interaction process has been observed by means of fast imaging, pressure and electrical measurements. Images showed bright rings due to the Faraday currents heating and exciting the plasma particles. Pressure measurements showed increases of the pressure in the regions where the MHD interaction is large. The pressure is 10 to 15% larger than when the MHD interaction process is silent. Finally by means of electrostatic probes mounted flush on the test body lateral surface Hall fields of about 500V/m had been measured. These results have been used for the validation of a numerical MHD code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis contributed to the volcanic hazard assessment through the reconstruction of some historical flank eruptions of Etna in order to obtain quantitative data (volumes, effusion rates, etc.) for characterizing the recent effusive activity, quantifying the impact on the territory and defining mitigation actions for reducing the volcanic risk as for example containment barriers. The reconstruction was based on a quantitative approach using data extracted from aerial photographs and topographic maps. The approach allows to obtain the temporal evolution of the lava flow field and estimating the Time Average Discharge Rate (TADR) by dividing the volume emplaced over a given time interval for the corresponding duration. The analysis concerned the 2001, 1981 and 1928 Etna eruptions. The choice of these events is linked to their impact on inhabited areas. The results of the analysis showed an extraordinarily high effusion rate for the 1981 and 1928 eruptions (over 600 m^3/s), unusual for Etna eruptions. For the 1981 Etna eruption an eruptive model was proposed to explain the high discharge rate. The obtained TADRs were used as input data for simulations of the propagation of the lava flows for evaluating different scenarios of volcanic hazard and analyse different mitigation actions against lava flow invasion. It was experienced how numerical simulations could be adopted for evaluating the effectiveness of barrier construction and for supporting their optimal design. In particular, the gabions were proposed as an improvement for the construction of barriers with respect to the earthen barriers. The gabion barriers allow to create easily modular structures reducing the handled volumes and the intervention time. For evaluating operational constrain an experimental test was carried out to test the filling of the gabions with volcanic rock and evaluating their deformation during transport and placement.