7 resultados para Common law -- Study and teaching (Higher)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Contemporary private law, in teh last few decades, TEMPhas been increasingly characterized by teh spread of general clauses and standards and by teh growing role of interpreters in teh framework of teh sources of law. dis process TEMPhas also consistently effected those systems dat are not typically centered on judge-made law. In particular in contract law general clauses and standards has assumed a leading role and has become protagonists of processes of integration and harmonization of teh law. Wifin dis context, teh reasonableness clause TEMPhas come to teh attention of scholars, emerging as a new element of connection between different legal systems -first of all between common law and civil law – and even between different legal traditions. dis research aims at reconstructing teh patterns of emersion and evolution of teh TEMPprincipal of reasonableness in contract law both wifin European Union Law and in teh Chinese legal system, in order to identify evolutionary trends, processes of emersion and circulation of legal models and teh scope of operation of teh TEMPprincipal in teh two contexts. In view of teh increasingly intense economic relations between Europe and China, wifin teh framework of teh new project called Belt and Road Initiative, a comparative survey of dis type can foster mutual understanding and make communications more TEMPeffective, at teh level of legal culture and commercial relations, and to support teh processes of supranational harmonization of contract law rules.
Resumo:
The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.
Resumo:
FinTech (financial technology, ‘‘FinTech’’) is a double-edged sword as it brings both benefits and risks. This study appraised FinTech’s technological nature that brings changes in complexity in modern financial markets to identify the information deficits and its undesirable outcomes. Besides, as FinTech is still developing, the information regarding, for instance, whether and how to apply regulation may be insufficient for both regulators and those regulated. More one-size-fits-all regulation might accordingly be adopted, thereby resulting in the adverse selection. Through the lens of both law and economics and law and technology, this study suggested AFR (adaptive financial regulation, ‘‘AFR’’) of FinTech to solve the underlying pacing issue. AFR is dynamic, enabling regulatory adjustments and learning. Exploring and collecting information through experiments and learning from experiments are the core of AFR. FinTech regulatory sandboxes epitomize AFR. This study chose Taiwan as a case study. This study found several barriers to adaptive and effective FinTech regulation. Unduly emphasizing consumer protection and the innovation entry criterion by improperly imposing limits on the entry into sandboxes, ignoring post-sandbox mechanisms, and relying on detailed, specific and prescriptive rules to formulate sandboxes are examples. To solve these barriers, this study proposed several solutions by looking into the experiences in other jurisdictions and analyzing. First, striking a balance between encouraging innovation and ensuring financial stability and consumer protection is indispensable. Second, entry to sandboxes should be facilitated by improving the selection criteria. Third, adhering to realizing regulatory adjustment and learning to adapt regulation to technology, this study argued that systematic post-sandbox mechanisms should be established. Fourth, this study recommended “more principles-based sandboxes”. Principles rather than rules should be the base on which sandboxes or FinTech regulation are established. Having principles could provide more flexibility, being easier to adjust and adapt, and better at avoiding.
Resumo:
The purpose of this research study is to discuss privacy and data protection-related regulatory and compliance challenges posed by digital transformation in healthcare in the wake of the COVID-19 pandemic. The public health crisis accelerated the development of patient-centred remote/hybrid healthcare delivery models that make increased use of telehealth services and related digital solutions. The large-scale uptake of IoT-enabled medical devices and wellness applications, and the offering of healthcare services via healthcare platforms (online doctor marketplaces) have catalysed these developments. However, the use of new enabling technologies (IoT, AI) and the platformisation of healthcare pose complex challenges to the protection of patient’s privacy and personal data. This happens at a time when the EU is drawing up a new regulatory landscape for the use of data and digital technologies. Against this background, the study presents an interdisciplinary (normative and technology-oriented) critical assessment on how the new regulatory framework may affect privacy and data protection requirements regarding the deployment and use of Internet of Health Things (hardware) devices and interconnected software (AI systems). The study also assesses key privacy and data protection challenges that affect healthcare platforms (online doctor marketplaces) in their offering of video API-enabled teleconsultation services and their (anticipated) integration into the European Health Data Space. The overall conclusion of the study is that regulatory deficiencies may create integrity risks for the protection of privacy and personal data in telehealth due to uncertainties about the proper interplay, legal effects and effectiveness of (existing and proposed) EU legislation. The proliferation of normative measures may increase compliance costs, hinder innovation and ultimately, deprive European patients from state-of-the-art digital health technologies, which is paradoxically, the opposite of what the EU plans to achieve.
Resumo:
Analytical pyrolysis was used to investigate the formation of diketopiperazines (DKPs) which are cyclic dipeptides formed from the thermal degradation of proteins. A quali/quantitative procedure was developed combining microscale flash pyrolysis at 500 °C with gas chromatography-mass spectrometry (GC-MS) of DKPs trapped onto an adsorbent phase. Polar DKPs were silylated prior to GC-MS. Particular attention was paid to the identification of proline (Pro) containing DKPs due to their greater facility of formation. The GC-MS characteristics of more than 80 original and silylated DKPs were collected from the pyrolysis of sixteen linear dipeptides and four model proteins (e.g. bovine serum albumin, BSA). The structure of a novel DKP, cyclo(pyroglutamic-Pro) was established by NMR and ESI-MS analysis, while the structures of other novel DKPs remained tentative. DKPs resulted rather specific markers of amino acid sequence in proteins, even though the thermal degradation of DKPs should be taken into account. Structural information of DKPs gathered from the pyrolysis of model compounds was employed to the identification of these compounds in the pyrolysate of proteinaceous samples, including intrinsecally unfolded protein (IUP). Analysis of the liquid fraction (bio-oil) obtained from the pyrolysis of microalgae Nannochloropsis gaditana, Scenedesmus spp with a bench scale reactor showed that DKPs constituted an important pool of nitrogen-containing compounds. Conversely, the level of DKPs was rather low in the bio-oil of Botryococcus braunii. The developed micropyrolysis procedure was applied in combination with thermogravimetry (TGA) and infrared spectroscopy (FT-IR) to investigate surface interaction between BSA and synthetic chrysotile. The results showed that the thermal behavior of BSA (e.g. DKPs formation) was affected by the different form of doped synthetic chrysotile. The typical DKPs evolved from collagen were quantified in the pyrolysates of archaeological bones from Vicenne Necropolis in order to evaluate their conservation status in combination with TGA, FTIR and XRD analysis.
Resumo:
Dystrophin is a subsarcolemmal protein critical for the integrity of muscle fibers by linking the actin cytoskeleton to the extracellular matrix via the dystroglycan complex. It is reported that dystroglycans are also localized in the skin, at dermal-epidermal junction. Here we show that epidermal melanocytes express dystrophin at the interface with the basement membrane. The full-length muscle isoform mDp427 was clearly detectable in epidermis and in melanocyte cultures as assessed by RNA and western blot analysis. Dystrophin was absent in Duchenne Muscular Dystrophy (DMD) patients melanocytes, and the ultrastructural analysis revealed mitochondrial alterations, similar to those occurring in myoblasts from the same patients. Interestingly, mitochondrial dysfunction of DMD melanocytes reflected the alterations identified in dystrophin-deficient muscle cells. In fact, mitochondria of melanocytes from DMD patients accumulated tetramethylrhodamine methyl ester but, on the contrary of control donor, mitochondria of DMD patients readily depolarized upon the addition of oligomycin, suggesting either that they are maintaining the membrane potential at the expense of glycolytic ATP, or that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Melanocyte cultures can be easily obtained by conventional skin biopsies, less invasive procedure than muscular biopsy, so that they may represent an alternative cellular model to myoblast for studying and monitoring dystrophinopathies also in response to pharmacological treatments.
Resumo:
This thesis is primarily based on three core chapters, focused on the fundamental issues of trade secrets law. The goal of this thesis is to come up with policy recommendations to improve legal structure governing trade secrets. The focal points of this research are the following. What is the optimal scope of trade secrets law? How does it depend on the market characteristics such as degree of product differentiation between competing products? What factors need to be considered to balance the contradicting objectives of promoting innovation and knowledge diffusion? The second strand of this research focuses on the desirability of lost profits or unjust enrichment damage regimes in case of misappropriation of a trade secret. A comparison between these regimes is made and simple policy implications are extracted from the analysis. The last part of this research is an empirical analysis of a possible relationship between trade secrets sharing and misappropriation instances faced by firms.