5 resultados para Color-fastness to saliva
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background. Abdominal porto-systemic collaterals (APSC) on Color-Doppler ultrasound are a frequent finding in portal hypertensive cirrhotic patients. In patients with cirrhosis, an HVPG ≥ 16mmHg has been shown to be associated with increased mortality in two studies. Non-invasive indicators of HVPG ≥ 16 mmHg might define a subgroup of high-risk patients, but data on this aspect are lacking. Aims. We aimed to investigate whether HVPG predicts mortality in patients with clinically significant portal hypertension, and if APSC may predict a severe portal hypertensive state (i.e. HVPG≥16mmHg) in patients with cirrhosis and untreated portal hypertension. Methods. We analysed paired HVPG and ultrasonographic data of 86 untreated portal hypertensive cirrhotic patients. On abdominal echo-color-Doppler data on presence, type and number of APSC were prospectively collected. HVPG was measured following published guidelines. Clinical, laboratory and endoscopic data were available in all cases. First decompensation of cirrhosis and liver-disease related mortality on follow-up (mean 28±20 months) were recorded. Results. 73% of patients had compensated cirrhosis, while 27% were decompensated. All patients had an HVPG≥10 mmHg (mean 17.8±5.1 mmHg). 58% of compensated patients and 82% of decompensated patients had an HVPG over 16 mmHg. 25% had no varices, 28% had small varices, and 47% had medium/large varices. HVPG was higher in patients with esophageal varices vs. patients without varices (19.0±4.8 vs. 14.1±4.2mmHg, p<0.0001), and correlated with Child-Pugh score (R=0.494,p=0.019). 36 (42%) patients had APSC were more frequent in decompensated patients (60% vs. 35%, p=0.03) and in patients with esophageal varices (52% vs. 9%,p=0.001). HVPG was higher in patients with APSC compared with those without PSC (19.9± 4.6 vs. 16.2± 4.9mmHg, p=0.001). The prevalence of APSC was higher in patients with HVPG≥16mmHg vs. those with HVPG<16mmHg (57% vs. 13%,p<0.0001). Decompensation was significantly more frequent in patients with HVPG≥16mmHg vs. HVPG<16mmHg (35.1% vs. 11.5%, p=0.02). On multivariate analysis only HVPG and bilirubin were independent predictors of first decompensation. 10 patients died during follow-up. All had an HVPG≥16 mmHg (26% vs. 0% in patients with HVPG <16mmHg,p=0.04). On multivariate analysis only MELD score and HVPG ≥16mmHg were independent predictors of mortality. In compensated patients the detection of APSC predicted an HVPG≥16mmHg with 92% specificity, 54% sensitivity, positive and negative likelihood ratio 7.03 and 0.50, which implies that the demonstration of APSC on ultrasound increased the probability of HVPG≥16mmHg from 58% to 91%. Conclusions. HVPG maintains an independent prognostic value in the subset of patients with cirrhosis and clinically significant portal hypertension. The presence of APSC is a specific indicator of severe portal hypertension in patients with cirrhosis. Detection of APSC on ultrasound allows the non-invasive identification of a subgroup of compensated patients with bad prognosis, avoiding the invasive measurement of HVPG.
Resumo:
The thesis objectives are to develop new methodologies for study of the space and time variability of Italian upper ocean ecosystem through the combined use of multi-sensors satellite data and in situ observations and to identify the capability and limits of remote sensing observations to monitor the marine state at short and long time scales. Three oceanographic basins have been selected and subjected to different types of analyses. The first region is the Tyrrhenian Sea where a comparative analysis of altimetry and lagrangian measurements was carried out to study the surface circulation. The results allowed to deepen the knowledge of the Tyrrhenian Sea surface dynamics and its variability and to defined the limitations of satellite altimetry measurements to detect small scale marine circulation features. Channel of Sicily study aimed to identify the spatial-temporal variability of phytoplankton biomass and to understand the impact of the upper ocean circulation on the marine ecosystem. An combined analysis of the satellite of long term time series of chlorophyll, Sea Surface Temperature and Sea Level field data was applied. The results allowed to identify the key role of the Atlantic water inflow in modulating the seasonal variability of the phytoplankton biomass in the region. Finally, Italian coastal marine system was studied with the objective to explore the potential capability of Ocean Color data in detecting chlorophyll trend in coastal areas. The most appropriated methodology to detect long term environmental changes was defined through intercomparison of chlorophyll trends detected by in situ and satellite. Then, Italian coastal areas subject to eutrophication problems were identified. This work has demonstrated that satellites data constitute an unique opportunity to define the features and forcing influencing the upper ocean ecosystems dynamics and can be used also to monitor environmental variables capable of influencing phytoplankton productivity.
Resumo:
The analysis of a carotenoid cleavage dioxygenase gene in a pool of peach cultivars revealed the existence of a functional allele (W1), associated with the white flesh trait, and three independent mutations associated with the yellow phenotype: a 2 bp insertion within a repetitive sequence (y1), a large transposable element within the intron (y2) and a single base substitution generating a premature stop codon (y3). Based on these evidences, the yellow flesh phenotype seems to have arisen from at least three independent mutational events.
Resumo:
The goal of many plant scientists’ research is to explain natural phenotypic variation in term of simple changes in DNA sequence. DNA-based molecular markers are extensively used for the construction of genome-wide molecular maps and to perform genetic analysis for simple and complex traits. The PhD thesis was divided into two main research lines according to the different approaches adopted. The first research line is to analyze the genetic diversity in an Italian apple germplasm collection for the identification of markers tightly linked to targeted genes by an association genetic method. This made it possible to identify synomym and homonym accessions and triploids. The fruit red skin color trait has been used to test the reliability of the genetic approaches in this species. The second line is related to the development of molecular markers closely linked to the Rvi13 and Rvi5 scab resistance genes, previously mapped on apple’s chromosome 10 and 17 respectively by using the traditional linkage mapping method. Both region have been fine-mapped with various type of markers that could be used for marker-assisted selection in future breeding programs and to isolate the two resistance genes.
Resumo:
Hair cortisol is a novel marker to measure long-term secretion cortisol free from many methodological caveats associated with other matrices such as plasma, saliva, urine, milk and faeces. For decades hair analysis has been successfully used in forensic science and toxicology to evaluate the exposure to exogenous substances and assess endogenous steroid hormones. Evaluation of cortisol in hair matrix began about a decade ago and have over the past five years had a remarkable development by advancing knowledge and affirming this method as a new and efficient way to study the hypothalamic-pituitary-adrenal (HPA) axis activity over a long time period. In farm animals, certain environmental or management conditions can potentially activate the HPA axis. Given the importance of cortisol in monitoring the HPA axis activity, a first approach has involved the study on the distribution of hair cortisol concentrations (HCC) in healthy dairy cows showing a physiological range of variation of this hormone. Moreover, HCC have been significantly influenced also by changes in environmental conditions and a significant positive correlation was detected between HCC and cows clinically or physiologically compromised suggesting that these cows were subjected to repeated HPA axis activation. Additionally, Crossbreed F1 heifers showed significantly lower HCC compared to pure animals and a breed influence has been seen also on the HPA axis activity stimulated by an environmental change showing thus a higher level of resilience and a better adaptability to the environment of certain genotypes. Hair proved to be an excellent matrix also in the study of the activation of the HPA axis during the perinatal period. The use of hair analysis in research holds great promise to significantly enhance current understanding on the role of HPA axis over a long period of time.