2 resultados para Chemically Modified electrodes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This doctorate focused on the development of dense polymeric membranes for carbon capture, mostly in post combustion applications, and for natural gas sweetening. The work was supported by the European Project NANOMEMC2 funded under H2020 program. Different materials have been investigated, that rely on two main transport mechanisms: the solution-diffusion and the facilitated transport. In both cases, proper nano-fillers have been added to the matrix, in order to boost the mechanical and permselective properties of the membranes. Facilitated transport membranes were based on the use of was polyvinylamine (PVAm), as main matrix with fixed-site carriers, and L-Arginine as mobile carrier; the filler, used mostly as reinforcer, was carboxymethylated nanocellulose (cNFC). Humid test showed interesting results, and especially the blend made of PVAm/cNFC/Arg in weight ratio 27,5/27,5/45 crossed the Robeson CO2/N2 upper bound, representing current state of the art membranes, with a CO2 permeability of 271 Barrer and CO2/N2 selectivity of 70. Solution diffusion membranes were based on Pebax2533 matrix which was added with three different graphene oxide (GO)-based materials, namely pristine GO, Porous Graphene Oxide (PGO) and a GO functionalized with polyetheramine (PEAGO). All of them provided a modest but clear increment of permeability of the Pebax matrix, from plus 2% (GO) to plus 8% (PGO), with no change in selectivity. The gas tested with this type of composites were CO2 and N2, for Post combustion capture applications. Pebax2533 was also chemically modified, obtaining the product called Benzoyl-P2533, that was fully characterized, and tested in term of permeation using five gas: CO2, N2, CH4, O2, and He. Modified material showed an increment of the overall permeability of the material of a fair 10% for all gases tested, apart from helium, that increased of almost 50%.
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.