13 resultados para Asymmetric organocatalysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During the last fifteen years organocatalysis emerged as a powerful tool for the enantioselective functionalization of the most different organic molecules. Both C-C and C-heteroatom bonds can be formed in an enantioselective fashion using many types of catalyst and the field is always growing. Many kind of chiral catalysts have emerged as privileged, but among them Proline, cinchona alkaloids, BINOL, and their derivatives showed to be particularly useful chiral scaffolds. This thesis, after a short presentation of many organocatalysts and activation modes, focuses mainly on cinchona alkaloid derived primary amines and BINOL derived chiral Brønsted acids, describing their properties and applications. Then, in the experimental part, these compounds are used for the catalysis of new transformations. The enantioselective Friedel-Crafts alkylation of cyclic enones with naphthols using cinchona alkaloid derived primary amines as catalysts is presented and discussed. The results of this work were very good and this resulted also in a publication. The same catalysts are then used to accomplish the enantioselective addition of indoles to cyclic enones. Many catalysts in combination with many acids as co-catalysts were tried and the reaction was fully studied. Selective N-alkylation was obtained in many cases, in combination with quite good to good enantioselectivities. Also other kind of catalysis were tried for this reaction, with interesting results. Another aza-Michael reaction between OH-free hydroxylamines and nitrostyrene using cinchona alkaloid derived thioureas is briefly discussed. Then our attention focused on Brønsted acid catalyzed transformations. With this regard, the Prins cyclization, a reaction never accomplished in an enantioselective fashion until now, is presented and developed. The results obtained are promising. In the last part of this thesis the work carried out abroad is presented. In Prof. Rueping laboratories, an enantioselective Nazarov cyclization using cooperative catalysis and the enantioselective desymmetrization of meso-hydrobenzoin catalyzed by Brønsted acid were studied.
Resumo:
This doctoral thesis deals with the development of novel organocatalytic strategies for asymmetric transformation. The intrinsic versatility of organocatalysis and the use of different activation modes have been exploited to achieve new catalytic enantioselective processes, towards the synthesis of biologically relevant scaffolds. The most investigated organocatalytic system have been those based on H-bond interaction (such as chiral thioureas or phosphoric acids) as well as the ones based on aminocatalysis. Despite conceptually distinct, the transformations detailed in this Thesis are linked together by simple and recurring modes of activation, induction and reactivity, promoted by the catalysts employed. The chemical diversity of the challenges encountered allows to get a precious overall view on organocatalysis, highlighting that enormous chemical diversity can be created by judicious choice of select catalyst.
Resumo:
The topics I came across during the period I spent as a Ph.D. student are mainly two. The first concerns new organocatalytic protocols for Mannich-type reactions mediated by Cinchona alkaloids derivatives (Scheme I, left); the second topic, instead, regards the study of a new approach towards the enantioselective total synthesis of Aspirochlorine, a potent gliotoxin that recent studies indicate as a highly selective and active agent against fungi (Scheme I, right). At the beginning of 2005 I had the chance to join the group of Prof. Alfredo Ricci at the Department of Organic Chemistry of the University of Bologna, starting my PhD studies. During the first period I started to study a new homogeneous organocatalytic aza-Henry reaction by means of Cinchona alkaloid derivatives as chiral base catalysts with good results. Soon after we introduced a new protocol which allowed the in situ synthesis of N-carbamoyl imines, scarcely stable, moisture sensitive compounds. For this purpose we used α-amido sulfones, bench stable white crystalline solids, as imine precursors (Scheme II). In particular we were able to obtain the aza-Henry adducts, by using chiral phase transfer catalysis, with a broad range of substituents as R-group and excellent results, unprecedented for Mannich-type transformations (Scheme II). With the optimised protocol in hand we have extended the methodology to the other Mannich-type reactions. We applied the new method to the Mannich, Strecker and Pudovik (hydrophosphonylation of imines) reactions with very good results in terms of enantioselections and yields, broadening the usefulness of this novel protocol. The Mannich reaction was certainly the most extensively studied work in this thesis (Scheme III). Initially we developed the reaction with α-amido sulfones as imine precursors and non-commercially available malonates with excellent results in terms of yields and enantioselections.3 In this particular case we recorded 1 mol% of catalyst loading, very low for organocatalytic processes. Then we thought to develop a new Mannich reaction by using simpler malonates, such as dimethyl malonate.4 With new optimised condition the reaction provided slightly lower enantioselections than the previous protocol, but the Mannich adducts were very versatile for the obtainment of β3-amino acids. Furthermore we performed the first addition of cyclic β-ketoester to α-amido sulfones obtaining the corresponding products in good yield with high level of diastereomeric and enantiomeric excess (Scheme III). Further studies were done about the Strecker reaction mediated by Cinchona alkaloid phase-transfer quaternary ammonium salt derivatives, using acetone cyanohydrin, a relatively harmless cyanide source (Scheme IV). The reaction proceeded very well providing the corresponding α-amino nitriles in good yields and enantiomeric excesses. Finally, we developed two new complementary methodologies for the hydrophosphonylation of imines (Scheme V). As a result of the low stability of the products derived from aromatic imines, we performed the reactions in mild homogeneous basic condition by using quinine as a chiral base catalyst giving the α-aryl-α-amido phosphonic acid esters as products (Scheme V, top).6 On the other hand, we performed the addition of dialkyl phosphite to aliphatic imines by using chiral Cinchona alkaloid phase transfer quaternary ammonium salt derivatives using our methodology based on α-amido sulfones (Scheme V, bottom). The results were good for both procedures covering a broad range of α-amino phosphonic acid ester. During the second year Ph.D. studies, I spent six months in the group of Prof. Steven V. Ley, at the Department of Chemistry of the University of Cambridge, in United Kingdom. During this fruitful period I have been involved in a project concerning the enantioselective synthesis of Aspirochlorine. We provided a new route for the synthesis of a key intermediate, reducing the number of steps and increasing the overall yield. Then we introduced a new enantioselective spirocyclisation for the synthesis of a chiral building block for the completion of the synthesis (Scheme VI).
Resumo:
C2-Symmetrical, enantiopure 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high-yielding, three-step sequence starting from 2,6-pyridinedicarbaldehyde and (S)-valinol or (S)-phenylglycinol. The new compounds were tested as ligands in palladium-catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99% enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl- and benzylmalonate dimethyl esters with 1,3-diphenyl-2-propenyl ethyl carbonate. Asymmetric synthesis of 2-(2-pyridyl)aziridines from chiral 2-pyridineimines bearing a stereogenic center at the nitrogen atom was development. The envisioned route involves the addition of chloromethyllithium to the imine derived from 2-pyridinealdehyde and (S)-valinol, protected as O-trimethylsilyl ether. The analogous reaction performed on the imine derived from (S)-valine methyl ester gave the product containing the aziridine ring as well as the α-chloro ketone group coming from the attack of chloromethyllithium to the ester function. Other stereogenic alkyl substituents at nitrogen gave less satisfactory results. Moreover, the aziridination protocol did not work on other aromatic imines, e.g. 3-pyridineimine and benzaldimine, which are not capable of bidentate chelation. The N-substituent could not be removed, but aziridine underwent ring-opening by attack of nitrogen, sulfur, and oxygen nucleophiles. Complete or prevalent regioselectivity was obtained using cerium trichloride heptahydrate as a catalyst. In some cases, the N-substituent could be removed by an oxidative protocol. The addition of organometallic (lithium, magnesium, zinc) reagents to 2-pyrroleimines derived from (S)-valinol and (S)-phenylglycinol gave the N-substituted-1-(2-pyrrolyl)alkylamines with high yields and diastereoselectivities. The (S,S)-diastereomers were useful intermediates for the preparation of enantiopure 1-[1-(2-pyrrolyl)alkyl]aziridines by routine cyclization of the β-aminoalcohol moiety and of (S)-N-benzoyl 1-[1-(2-pyrrolyl)alkyl]amines and their N-substituted derivatives by oxidative cleavage of the chiral auxiliary. 1-Allyl-2-pyrroleimines obtained from (S)-phenylglycinol and (S)-valinol underwent highly diastereoselective addition of allylmetal reagents, used in excess amounts, to give the corresponding secondary amines with concomitant allyl to 1-propenyl isomerisation of the 1-pyrrole substituent. Protection of the 2-aminoalcohol moiety as oxazolidinone, amide or Boc derivate followed by ring closing metathesis of the alkene groups gave the unsaturated bicyclic compound, whose hydrogenation afforded the indolizidine derivative as a mixture of separable diastereomers. The absolute configuration of the main diastereomer was assessed by X-ray crystallographic analysis.
Resumo:
We report the synthesis and application of some ion-tagged catalysts in organometallic catalysis and organocatalysis. With the installation of an ionic group on the backbone of a known catalyst, two main effects are generally obtained. i) a modification of the solubility of the catalyst: if judicious choice of the ion pair is made, the ion-tag can confer to the catalyst a solubility profile suitable for catalyst recycling. ii) the ionic group can play a non-innocent role in the process considered: if stabilizing interaction between the ionic group and the developing charges in the transition state are established, the reaction can speed up. We describe the use of ion-tagged diphenylprolinol as Zn ligand. The chiral ligand grafted onto an ionic liquid (IL) was recycled 10 times with no loss of reactivity and selectivity, when it was employed in the first example of enantioselective addition of ZnEt2 to aldehydes in ILs. An ammonium-tagged phosphine displayed the capability to stabilize Pd catalysts for the Suzuki reaction in ILs. The ionic phase was recycled 6 times with no detectable loss of activity and very low Pd leaching in the organic phase. This catalytic system was also employed for the functionalization of the challenging substrate 5,11-dibromotetracene. In the field of organocatalysis, we prepared two ion-tagged derivatives of the McMillan imidazolidinone. The results of the asymmetric Diels-Alder reaction between trans-cinnamaldehyde and cyclopentadiene exhibited great dependence on the position and nature of the ionic group. Finally, when O-TMS-diphenylprolinol was tagged with an imidazolium ion, exploiting a silyl ether linker, an efficient catalyst for the asymmetric addition of aldehydes to nitroolefins was achieved. The catalyst displayed enhanced reactivity and the same high level of selectivity of the untagged parent catalyst and it could be employed in a wide range of reaction conditions, included use of water as solvent.
Resumo:
The studies conducted during my Phd thesis were focused on two different directions: 1. In one case we tried to face some long standing problems of the asymmetric aminocatalysis as the activation of encumbered carbonyl compounds and the control of the diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one. In this section (Challenges) was described the asymmetric aziridination of ,-unsaturated ketones, the activation of ,-unsaturated -branched aldehydes and the Michael addition of oxindoles to enals and enones. For the activation via iminium ion formation of sterically demanding substrates, as ,-unsaturated ketones and ,-unsaturated -branched aldehydes, we exploited a chiral primary amine in order to overcome the problem of the iminium ion formation between the catalyst and encumbered carbonylic componds. For the control of diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one we envisaged that a suitable strategy was the Michael addition to 3 substituted oxindoles to enals activated via LUMO-lowering catalysis. In this synthetic protocol we designed a new bifunctional catalyst with an amine moiety for activate the aldehyde and a tioureidic fragment for direct the approach of the oxindole. This part of the thesis (Challenges) could be considered pure basic research, where the solution of the synthetic problem was the goal itself of the research. 2. In the other hand (Molecules) we applied our knowledge about the carbonylic compounds activation and about cascade reaction to the synthesis of three new classes of spirooxindole in enantiopure form. The construction of libraries of these bioactive compounds represented a scientific bridge between medicinal chemistry or biology and the asymmetric catalysis.
Resumo:
The proposal in my thesis has been the study of Stereoselective α-alkylation through SN1 type reaction. SN1 type reaction involves a stabilized and reactive carbocation intermediate By taking advantages of stability of particular carbocations, the use of carbocations in selective reactions has been important. In this work has been necessary to know the stability and reactivity of carbocations. And the work of Mayr group has helped to rationalize the behaviour and reactivity between the carbocations and nucleophiles by the use of Mayr’s scale of reactivity. The use of alcohols to performed the stable and reactive carbocations have been the key in my thesis. The direct nucleophilic substitution of alcohols has been a crucial scope in the field of organic synthesis, because offer a wide range of intermediates for the synthesis of natural products and pharmaceutics synthesis. In particular the catalytic nucleophilic direct substitution of alcohols represents a novel methodology for the preparation of a variety of derivatives, and water only as the sub-product in the reaction. The stereochemical control of the transformation C-H bond into stereogenic C-C bond adjacent to carbonyl functionalized has been studied for asymmetric catalysis. And the field of organocatalysis has introduced the use of small organic molecule as catalyst for stereoselective transformations. Merging these two concepts Organocatalysis and Mayr’s scale, my thesis has developed a new approach for the α-alkylation of aldehydes and ketones through SN1 type reaction.
Resumo:
During the course of my Ph.D. in the laboratories directed by Prof. Alfredo Ricci at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, I was involved in the study and the application of a number of organocatalytic systems, all coming from the natural chiral pool. The first part of this thesis will be devoted to new homogeneous organocatalytic reactions promoted by Cinchona alkaloid-based organocatalysts. Quinine based catalysts were found to be a very effective catalyst for Diels-Alder reactions involving 3-vinylindoles. Excellent results in terms of yields and enantioselectivities were achieved, outlining also a remarkable organocatalytic operational mode mimicking enzymatic catalysis. The same reaction with 2-vinylindoles showed a completely different behaviour resulting in an unusual resolution-type process. The asymmetric formal [3+2] cycloaddition with in situ generated N-carbamoyl nitrones using Cinchona-derived quaternary ammonium salts as versatile catalysts under phase transfer conditions, outlines another application in organocatalysis of this class of alkaloids. During the seven months stage in the Prof. Helma Wennemers’ group at the Department of Chemistry of the University of Basel (Switzerland) I have been involved in organocatalysis promoted by oligopeptides. My contribution regarded the 1,4-addition reaction of aldehydes to nitroolefins. In the work performed at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, in collaboration with the ‘Institut Charles Gerhardt-Montpellier, of Montpellier (France) the possibility of performing for the first time heterogeneous organocatalysis by using a natural polysaccharide biopolymer as the source of chirality was disclosed. With chitosan, derived from deacetylation of chitin, a highly enantioselective heterogeneous organocatalytic aldol reaction could be performed. The use of an eco-friendly medium such as water, the recyclability of the catalytic specie and the renewable nature of the polysaccharide are assets of this new approach in organocatalysis and open interesting perspectives for the use of biopolymers.
Resumo:
The main aim of my PhD project was the design and the synthesis of new pyrrolidine organocatalysts. New effective ferrocenyl pyrrolidine catalysts, active in benchmark organocatalytic reactions, has been developed. The ferrocenyl moiety, in combination with simple ethyl chains, is capable of fixing the enamine conformation addressing the approach trajectory of the nucleophile in the reaction. The results obtained represent an interesting proof-of-concept, showing for the first time the remarkable effectiveness of the ferrocenyl moiety in providing enantioselectivity through conformational selection. This approach could be viably employed in the rational design of ligands for metal or organocatalysts. Other hindered secondary amines has been prepared from alkylation of acyclic chiral nitroderivatives with alcohols in a highly diastereoselective fashion, giving access to functionalized, useful organocatalytic chiral pyrrolidines. A family of new pyrrolidines bearing sterogenic centers and functional groups can be readily accessible by this methodology. The second purpose of the project was to study in deep the reactivity of stabilized carbocations in new metal-free and organocatalytic reactions. By taking advantage of the results from the kinetic studies described by Mayr, a simple and effective procedure for the direct formylation of aryltetrafluoroborate salts, has been development. The coupling of a range of aryl- and heteroaryl- trifluoroborate salts with 1,3-benzodithiolylium tetrafluoroborate, has been attempted in moderate to good yields. Finally, a simple and general methodology for the enamine-mediated enantioselective α-alkylation of α-substituted aldehydes with 1,3-benzodithiolylium tetrafluoroborate has been reported. The introduction of the benzodithiole moiety permit the installation of different functional groups due to its chameleonic behaviour.
Resumo:
In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.
Resumo:
In the following chapters new methods in organocatalysis are described. The design of new catalysts is explored starting from the synthesis and the study of ion tagged prolines to their applications and recycle, then moving to the synthesis of new bicyclic diarylprolinol silyl ethers and their use in organocatalytic transformations. The study of new organocatalytic reaction is also investigated, in particular bifunctional thioureas are employed to catalyse the conjugate addition of nitro compounds to 3-yilidene oxindoles in sequential and domino reactions. Finally, preliminary results on photochemical organocatalytic atom transfer radical addition to alkenes are discussed in the last chapter.