17 resultados para Acerola fruit
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In a global and increasingly competitive fresh produce market, more attention is being given to fruit quality traits and consumer satisfaction. Kiwifruit occupies a niche position in the worldwide market, when compared to apples, oranges or bananas. It is a fruit with extraordinarily good nutritional traits, and its benefits to human health have been widely described. Until recently, international trade in kiwifruit was restricted to a single cultivar, but different types of kiwifruit are now becoming available in the market. Effective programmes of kiwifruit improvement start by considering the requirements of consumers, and recent surveys indicate that sweeter fruit with better flavour are generally preferred. There is a strong correlation between at-harvest dry matter and starch content, and soluble solid concentration and flavour when fruit are eating ripe. This suggests that carbon accumulation strongly influences the development of kiwifruit taste. The overall aim of the present study was to determine what factors affect carbon accumulation during Actinidia deliciosa berry development. One way of doing this is by comparing kiwifruit genotypes that differ greatly in their ability to accumulate dry matter in their fruit. Starch is the major component of dry matter content. It was hypothesized that genotypes were different in sink strength. Sink strength, by definition, is the effect of sink size and sink activity. Chapter 1 reviews fruit growth, kiwifruit growth and development and carbon metabolism. Chapter 2 describes the materials and methods used. Chapter 3, 4, 5 and 6 describes different types of experimental work. Chapter 7 contains the final discussions and the conclusions Three Actinidia deliciosa breeding populations were analysed in detail to confirm that observed differences in dry matter content were genetically determined. Fruit of the different genotypes differed in dry matter content mainly because of differences in starch concentrations and dry weight accumulation rates, irrespective of fruit size. More detailed experiments were therefore carried out on genotypes which varied most in fruit starch concentrations to determine why sink strengths were so different. The kiwifruit berry comprises three tissues which differ in dry matter content. It was initially hypothesised that observed differences in starch content could be due to a larger proportion of one or other of these tissues, for example, of the central core which is highest in dry matter content. The study results showed that this was not the case. Sink size, intended as cell number or cell size, was then investigated. The outer pericarp makes up about 60% of berry weight in ‘Hayward’ kiwifruit. The outer pericarp contains two types of parenchyma cells: large cells with low starch concentration, and small cells with high starch concentration. Large cell, small cell and total cell densities in the outer pericarp were shown to be not correlated with either dry matter content or fruit size but further investigation of volume proportion among cell types seemed justified. It was then shown that genotypes with fruit having higher dry matter contents also had a higher proportion of small cells. However, the higher proportion of small cell volume could only explain half of the observed differences in starch content. So, sink activity, intended as sucrose to starch metabolism, was investigated. In transiently starch storing sinks, such as tomato fruit and potato tubers, a pivotal role in carbon metabolism has been attributed to sucrose cleaving enzymes (mainly sucrose synthase and cell wall invertase) and to ADP-glucose pyrophosphorylase (the committed step in starch synthesis). Studies on tomato and potato genotypes differing in starch content or in final fruit soluble solid concentrations have demonstrated a strong link with either sucrose synthase or ADP-glucose pyrophosphorylase, at both enzyme activity and gene expression levels, depending on the case. Little is known about sucrose cleaving enzyme and ADP-glucose pyrophosphorylase isoforms. The HortResearch Actinidia EST database was then screened to identify sequences putatively encoding for sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoforms and specific primers were designed. Sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoform transcript levels were anlayzed throughout fruit development of a selection of four genotypes (two high dry matter and two low dry matter). High dry matter genotypes showed higher amounts of sucrose synthase transcripts (SUS1, SUS2 or both) and higher ADP-glucose pyrophosphorylase (AGPL4, large subunit 4) gene expression, mainly early in fruit development. SUS1- like gene expression has been linked with starch biosynthesis in several crop (tomato, potato and maize). An enhancement of its transcript level early in fruit development of high dry matter genotypes means that more activated glucose (UDP-glucose) is available for starch synthesis. This can be then correlated to the higher starch observed since soon after the onset of net starch accumulation. The higher expression level of AGPL4 observed in high dry matter genotypes suggests an involvement of this subunit in drive carbon flux into starch. Changes in both enzymes (SUSY and AGPse) are then responsible of higher starch concentrations. Low dry matter genotypes showed generally higher vacuolar invertase gene expression (and also enzyme activity), early in fruit development. This alternative cleavage strategy can possibly contribute to energy loss, in that invertases’ products are not adenylated, and further reactions and transport are needed to convert carbon into starch. Although these elements match well with observed differences in starch contents, other factors could be involved in carbon metabolism control. From the microarray experiment, in fact, several kinases and transcription factors have been found to be differentially expressed. Sink strength is known to be modified by application of regulators. In ‘Hayward’ kiwifruit, the synthetic cytokinin CPPU (N-(2-Chloro-4-Pyridyl)-N-Phenylurea) promotes a dramatic increase in fruit size, whereas dry matter content decreases. The behaviour of CPPU-treated ‘Hayward’ kiwifruit was similar to that of fruit from low dry matter genotypes: dry matter and starch concentrations were lower. However, the CPPU effect was strongly source limited, whereas in genotype variation it was not. Moreover, CPPU-treated fruit gene expression (at sucrose cleavage and AGPase levels) was similar to that in high dry matter genotypes. It was therefore concluded that CPPU promotes both sink size and sink activity, but at different “speeds” and this ends in the observed decrease in dry matter content and starch concentration. The lower “speed” in sink activity is probably due to a differential partitioning of activated glucose between starch storage and cell wall synthesis to sustain cell expansion. Starch is the main carbohydrate accumulated in growing Actinidia deliciosa fruit. Results obtained in the present study suggest that sucrose synthase and AGPase enzymes contribute to sucrose to starch conversion, and differences in their gene expression levels, mainly early in fruit development, strongly affect the rate at which starch is therefore accumulated. This results are interesting in that starch and Actinidia deliciosa fruit quality are tightly connected.
Resumo:
Brown rot caused by Monilinia laxa and Monilinia fructigena is considered one of the most important diseases affecting Prunus species. Although some losses can result from the rotten fruits in the orchard, most of the damage is caused to fruits during the post-harvest phase. Several studies reported that brown rot incidence during fruit development highly varies; it was found that at a period corresponding to the the pit hardening stage, fruit susceptibility drastically decreases, to be quickly restored afterwards. However the molecular basis of this phenomenon is still not well understood. Furthermore, no difference in the rot incidence was found between wound and un-wound fruits, suggesting that resistance associated more to a specifc biochemical response of the fruit, rather than to a higher mechanical resistance. So far, the interaction Monilinia-peach was analyzed through chemical approaches. In this study, a bio-molecular approach was undertaken in order to reveal alteration in gene expression associated to the variation of susceptibility. In this thesis three different methods for gene expression analysis were used to analyze the alterations in gene expression occurring in peach fruits during the pit hardening stage, in a period encompassing the temporary change in Monilinia susceptibility: real time PCR, microarray and cDNA AFLP techniques. In 2005, peach fruits (cv.K2) were weekly harvested during a 19-week long-period, starting from the fourth week after full bloom, until full maturity. At each sampling time, three replicates of 5 fruits each were dipped in the M.laxa conidial suspension or in distilled water, as negative control. The fruits were maintained at room temperature for 3 hours; afterwards, they were peeled with a scalpel; the peel was immediately frozen in liquid nitrogen and transferred to -80 °C until use. The degree of susceptibility of peach fruit to the pathogen was determined on 3 replicates of 20 fruits each, as percentage of infected fruits, after one week at 20 °C. Real time PCR analysis was performed to study the variation in expression of those genes encoding for the enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), leucoanthocyanidine reductase (LAR), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and of the jasmonate pathway, such as lipoxygenase (LOX), both involved in the production of important defense compounds. Alteration in gene expression was monitored on fruit samples of a period encompassing the pit hardening stage and the corresponding temporary resistance to M.laxa infections, weekly, from the 6thto the 12th week after full bloom (AFB) inoculated with M. laxa or mock-inoculated. The data suggest a critical change in the expression level of the phenylpropanoid pathway from the 7th to the 8th week AFB; such change could be directly physiologically associated to the peach growth and it could indirectly determine the decrease of susceptibility of peach fruit to Monilinia rot during the subsequent weeks. To investigate on the transcriptome variation underneath the temporary loss of susceptibility of peach fruits to Monilinia rot, the microarray and the cDNA AFLP techniques were used. The samples harvested on the 8th week AFB (named S, for susceptible ones) and on the 12th week AFB (named R, for resistant ones) were compared, both inoculated or mock-inoculated. The microarray experiments were carried out at the University of Padua (Dept. of Environmental Agronomy and Crop Science), using the μPEACH1.0 microarray together with the suited protocols. The analysis showed that 30 genes (corresponding to the 0.6% of the total sequences (4806) contained in the μPeach1.0 microarray) were found up-regulated and 31 ( 0.6%) down regulated in RH vs. SH fruits. On the other hand, 20 genes (0.4%) were shown to be up-regulated and 13 (0.3%) down-regulated in the RI vs. SI fruit. No genes were found differentially expressed in the mock-inoculated resistant fruits (RH) vs. the inoculated resistant ones (RI). Among the up-regulated genes an ATP sulfurylase, an heat shock protein 70, the major allergen Pru P1, an harpin inducing protein and S-adenosylmethionine decarboxylase were found, conversely among the down-regulated ones, cinnamyl alcohol dehydrogenase, an histidine- containing phosphotransfer protein and the ferritin were found. The microarray experimental results and the data indirectly derived, were tested by Real Time PCR analysis. cDNA AFLP analysis was also performed on the same samples. 339 transcript derived fragments considered significant for Monilinia resistance, were selected, sequenced and classified. Genes potentially involved in cell rescue and defence were well represented (8%); several genes (12.1%) involved in the protein folding, post-transductional modification and genes (9.2%) involved in cellular transport were also found. A further 10.3% of genes were classified as involved in the metabolism of aminoacid, carbohydrate and fatty acid. On the other hand, genes involved in the protein synthesis (5.7%) and in signal transduction and communication (5.7%) were found. Among the most interesting genes found differentially expressed between susceptible and resistant fruits, genes encoding for pathogenesis related (PR) proteins were found. To investigate on the association of Monilinia resistance and PR biological function, the major allergen Pru P1 (GenBank accession AM493970) and its isoform (here named Pru P2), were expressed in heterologous system and in vitro assayed for their anti-microbial activity. The ribonuclease activity of the recombinant Pru P1 and Pru P2 proteins was assayed against peach total RNA. As the other PR10 proteins, they showed a ribonucleolytic activity, that could be important to contrast pathogen penetration. Moreover Pru P1 and Pru P2 recombinant proteins were checked for direct antimicrobial activity. No inhibitory effect of Pru P1 or Pru P2 was detected against the selected fungi.
Resumo:
Maintaining the postharvest quality of whole and fresh-cut fruit during storage and distribution is the major challenge facing fruit industry. For this purpose, industry adopt a wide range of technologies to enable extended shelf-life. Many factors can lead to loss of quality in fresh product, hence the common description of these products as ‘perishable’. As a consequence normal factors such as transpiration and respiration lead ultimately to water loss and senescence of the product. Fruits and vegetables are living commodities and their rate of respiration is of key importance to maintenance of quality. It has been commonly observed that the greater the respiration rate of a product, the shorter the shelf-life. The principal problem for fresh-cut fruit industries is the relative shorter shelf-life of minimally processed fruit (MPF) compared to intact product. This fact is strictly connected with the higher ethylene production of fruit tissue stimulated during fresh-cut processing (peeling, cutting, dipping). 1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene action and several researches have shown its effectiveness on the inhibition of ripening and senescence incidence for intact fruit and consequently on their shelf-life extension. More recently 1-MCP treatment has been tested also for shelf-life extension of MPF but discordant results have been obtained. Considering that in some countries 1-MCP is already a commercial product registered for the use on a number of horticultural products, the main aim of this actual study was to enhance our understanding on the effects of 1-MCP treatment on the quality maintenance of whole and fresh-cut climacteric and non-climacteric fruit (apple, kiwifruit and pineapple). Concerning the effects of 1-MCP on whole fruit, was investigated the effects of a semi-commercial postharvest treatment with 1-MCP on the quality of Pink Lady apples as functions of fruit ripening stage, 1-MCP dose, storage time and also in combination with controlled atmospheres storage in order to better understand what is the relationship among these parameters and if is possible to maximize the 1-MCP treatment to meet the market/consumer needs and then in order to put in the market excellent fruit. To achieve this purpose an incomplete three-level three-factor design was adopted. During the storage were monitored several quality parameters: firmness, ripening index, ethylene and carbon dioxide production and were also performed a sensory evaluations after 6 month of storage. In this study the higher retention of firmness (at the end of storage) was achieved by applying the greatest 1-MCP concentration to fruits with the lowest maturity stage. This finding means that in these semi-commercial conditions we may considerate completely blocked the fruit softening. 1-MCP was able to delay also the ethylene and CO2 production and the maturity parameters (soluble solids content and total acidity). Only in some cases 1-MCP generate a synergistic effect with the CA storage. The results of sensory analyses indicated that, the 1-MCP treatment did not affect the sweetness and whole fruit flavour while had a little effect on the decreasing cut fruit flavour. On the contrary the treated apple was more sour, crisp, firm and juicy. The effects of some treatment (dipping and MAP) on the nutrient stability were also investigated showing that in this case study the adopted treatments did not have drastic effects on the antioxidant compounds on the contrary the dipping may enhance the total antioxidant activity by the accumulation of ascorbic acid on the apple cut surface. Results concerning the effects of 1-MCP in combination with MAP on the quality parameters behaviour of the kiwifruit were not always consistent and clear: in terms of colour maintenance, it seemed to have a synergistic effect with N2O MAP; as far as ripening index is concerned, 1-MCP had a preservative effect, but just for sample packed in air.
Resumo:
The present work provides an ex-post assessment of the UK 5-a-day information campaign where the positive effects of information on consumption levels are disentangled from the potentially conflicting price dynamics. A model-based estimate of the counterfactual (no-intervention) scenario is computed using data from the Expenditure and Food Survey between 2002 and 2006. For this purpose fruit and vegetable demand is modelled employing Quadratic Almost Ideal Demand System (QUAIDS) specification with demographic effects and controlling for potential endogeneity of prices and total food expenditure.
Resumo:
The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.
Resumo:
Over the past years fruit and vegetable industry has become interested in the application of both osmotic dehydration and vacuum impregnation as mild technologies because of their low temperature and energy requirements. Osmotic dehydration is a partial dewatering process by immersion of cellular tissue in hypertonic solution. The diffusion of water from the vegetable tissue to the solution is usually accompanied by the simultaneous solutes counter-diffusion into the tissue. Vacuum impregnation is a unit operation in which porous products are immersed in a solution and subjected to a two-steps pressure change. The first step (vacuum increase) consists of the reduction of the pressure in a solid-liquid system and the gas in the product pores is expanded, partially flowing out. When the atmospheric pressure is restored (second step), the residual gas in the pores compresses and the external liquid flows into the pores. This unit operation allows introducing specific solutes in the tissue, e.g. antioxidants, pH regulators, preservatives, cryoprotectancts. Fruit and vegetable interact dynamically with the environment and the present study attempts to enhance our understanding on the structural, physico-chemical and metabolic changes of plant tissues upon the application of technological processes (osmotic dehydration and vacuum impregnation), by following a multianalytical approach. Macro (low-frequency nuclear magnetic resonance), micro (light microscopy) and ultrastructural (transmission electron microscopy) measurements combined with textural and differential scanning calorimetry analysis allowed evaluating the effects of individual osmotic dehydration or vacuum impregnation processes on (i) the interaction between air and liquid in real plant tissues, (ii) the plant tissue water state and (iii) the cell compartments. Isothermal calorimetry, respiration and photosynthesis determinations led to investigate the metabolic changes upon the application of osmotic dehydration or vacuum impregnation. The proposed multianalytical approach should enable both better designs of processing technologies and estimations of their effects on tissue.
Resumo:
During the last decade peach and nectarine fruit have lost considerable market share, due to increased consumer dissatisfaction with quality at retail markets. This is mainly due to harvesting of too immature fruit and high ripening heterogeneity. The main problem is that the traditional used maturity indexes are not able to objectively detect fruit maturity stage, neither the variability present in the field, leading to a difficult post-harvest management of the product and to high fruit losses. To assess more precisely the fruit ripening other techniques and devices can be used. Recently, a new non-destructive maturity index, based on the vis-NIR technology, the Index of Absorbance Difference (IAD), that correlates with fruit degreening and ethylene production, was introduced and the IAD was used to study peach and nectarine fruit ripening from the “field to the fork”. In order to choose the best techniques to improve fruit quality, a detailed description of the tree structure, of fruit distribution and ripening evolution on the tree was faced. More in details, an architectural model (PlantToon®) was used to design the tree structure and the IAD was applied to characterize the maturity stage of each fruit. Their combined use provided an objective and precise evaluation of the fruit ripening variability, related to different training systems, crop load, fruit exposure and internal temperature. Based on simple field assessment of fruit maturity (as IAD) and growth, a model for an early prediction of harvest date and yield, was developed and validated. The relationship between the non-destructive maturity IAD, and the fruit shelf-life, was also confirmed. Finally the obtained results were validated by consumer test: the fruit sorted in different maturity classes obtained a different consumer acceptance. The improved knowledge, leaded to an innovative management of peach and nectarine fruit, from “field to market”.
Resumo:
The brown rot fungi belong to a group of fungal pathogens that causes considerable damage to cultivated fruits trees, particularly stone fruits and apples in the temperate regions of the World and during the postharvest with an important economic impact. In particular in Italy, it is important to monitor the Monilinia population to control economic losses associated to the peach and nectarine market. This motivates the research steps presented in this dissertation on Monilinia Italian isolates. The Monilinia species collected from stone fruits have been identified using molecular analysis based on specific primers. The relevant role of M. fructicola was confirmed and, for the first time, it was found also on apple fruits. To avoid the development of resistant strains and implement valid treatment strategies, the understanding of the fruit natural resistance during different developmental stages and the assessment of the Monilinia sensitivity/resistance to fungicides are required. The relationship between the inhibition spots and the phenolic compounds in peach fruit peel was highlighted in this research. Three methods were used to assess isolate resistance/sensitivity, the amended medium, the Spiral Gradient Endpoint Method (SGD) and the Alamar Blue method. The PCR was used to find possible mutation points in the b-tubulin gene that is responsible for fungicide resistance. Interestingly, no mutation points were observed in resistant M. laxa isolates, suggesting that the resistance could be stimulated by environmental factors. This lead to the study of the effect of the temperature on the resistance and the preliminary results of in vitro tests showed that maximum inhibition was observed at 30°C.
Resumo:
The analysis of a carotenoid cleavage dioxygenase gene in a pool of peach cultivars revealed the existence of a functional allele (W1), associated with the white flesh trait, and three independent mutations associated with the yellow phenotype: a 2 bp insertion within a repetitive sequence (y1), a large transposable element within the intron (y2) and a single base substitution generating a premature stop codon (y3). Based on these evidences, the yellow flesh phenotype seems to have arisen from at least three independent mutational events.
Resumo:
Agri-food supply chains extend beyond national boundaries, partially facilitated by a policy environment that encourages more liberal international trade. Rising concentration within the downstream sector has driven a shift towards “buyer-driven” global value chains (GVCs) extending internationally with global sourcing and the emergence of multinational key economic players that compete with increase emphasis on product quality attributes. Agri-food systems are thus increasingly governed by a range of inter-related public and private standards, both of which are becoming a priori mandatory, especially in supply chains for high-value and quality-differentiated agri-food products and tend to strongly affect upstream agricultural practices, firms’ internal organization and strategic behaviour and to shape the food chain organization. Notably, increasing attention has been given to the impact of SPS measures on agri-food trade and notably on developing countries’ export performance. Food and agricultural trade is the vital link in the mutual dependency of the global trade system and developing countries. Hence, developing countries derive a substantial portion of their income from food and agricultural trade. In Morocco, fruit and vegetable (especially fresh) are the primary agricultural export. Because of the labor intensity, this sector (especially citrus and tomato) is particularly important in terms of income and employment generation, especially for the female laborers hired in the farms and packing houses. Hence, the emergence of agricultural and agrifood product safety issues and the subsequent tightening of market requirements have challenged mutual gains due to the lack of technical and financial capacities of most developing countries.
Resumo:
The introduction of dwarfed rootstocks in apple crop has led to a new concept of intensive planting systems with the aim of producing early high yield and with returns of the initial high investment. Although yield is an important aspect to the grower, the consumer has become demanding regards fruit quality and is generally attracted by appearance. To fulfil the consumer’s expectations the grower may need to choose a proper training system along with an ideal pruning technique, which ensure a good light distribution in different parts of the canopy and a marketable fruit quality in terms of size and skin colour. Although these aspects are important, these fruits might not reach the proper ripening stage within the canopy because they are often heterogeneous. To describe the variability present in a tree, a software (PlantToon®), was used to recreate the tree architecture in 3D in the two training systems. The ripening stage of each of the fruits was determined using a non-destructive device (DA-Meter), thus allowing to estimate the fruit ripening variability. This study deals with some of the main parameters that can influence fruit quality and ripening stage within the canopy and orchard management techniques that can ameliorate a ripening fruit homogeneity. Significant differences in fruit quality were found within the canopies due to their position, flowering time and bud wood age. Bi-axis appeared to be suitable for high density planting, even though the fruit quality traits resulted often similar to those obtained with a Slender Spindle, suggesting similar fruit light availability within the canopies. Crop load confirmed to be an important factor that influenced fruit quality as much as the interesting innovative pruning method “Click”, in intensive planting systems.
Resumo:
Precision Agriculture (PA) and the more specific branch of Precision Horticulture are two very promising sectors. They focus on the use of technologies in agriculture to optimize the use of inputs, so to reach a better efficiency, and minimize waste of resources. This important objective motivated many researchers and companies to search new technology solutions. Sometimes the effort proved to be a good seed, but sometimes an unfeasible idea. So that PA, from its birth more or less 25 years ago, is still a “new” management, interesting for the future, but an actual low adoption rate is still reported by experts and researchers. This work aims to give a contribution in finding the causes of this low adoption rate and proposing a methodological solution to this problem. The first step was to examine prior research about Precision Agriculture adoption, by ex ante and ex post approach. It was supposed as important to find connections between these two phases of a purchase experience. In fact, the ex ante studies dealt with potential consumer’s perceptions before a usage experience occurred, therefore before purchasing a technology, while the ex post studies described the drivers which made a farmer become an end-user of PA technology. Then, an example of consumer research is presented. This was an ex ante research focused on pre-prototype technology for fruit production. This kind of research could give precious information about consumer acceptance before reaching an advanced development phase of the technology, and so to have the possibility to change something with the least financial impact. The final step was to develop the pre-prototype technology that was the subject of the consumer acceptance research and test its technical characteristics.
Resumo:
The ripening stage of apple fruits at harvest is the main factor influencing fruit quality during the cold storage period that lasts several months and give rise to physiological disorders in fruits of susceptible cultivars. In particular, superficial scald is connected to α-farnesene oxidation, leading to fruit browning. Therefore, the assessment of the optimal ripening stage at harvest is considered to be crucial to control the overall quality, the length of storage life and the scald incidence. However, the maturity indexes traditionally used in the horticultural practice do not strictly correlate with fruit maturity, and do not account for the variability occurring in the field. Hence, the present work focused on the determination of apple fruit ripening with the use of an innovative, non-destructive device, the DA-meter. The study was conducted on ‘Granny Smith’ and ‘Pink Lady’ cultivars, which differ in scald susceptibility. Pre- and post- harvest ripening behavior of the fruits was studied, and the influence of ripening stage and treatments with 1-MCP were evaluated in relation to scald development and related metabolites. IAD was shown to be a reliable indicator of apple ripening, allowing cultivar-specific predictions of the optimal harvest time in different growing seasons. IAD may also be employed to segregate apple fruits in maturity classes, requiring different storage conditions to control flesh firmness reduction and scald incidence. Moreover, 1-MCP application is extremely effective in reducing superficial scald, and its effect is influenced by fruit ripening stage reached at harvest. However, the relation between ethylene and α-farnesene was not entirely elucidated. Thus, ethylene can be involved in other oxidative processes associated with scald besides α-farnesene regulation.