4 resultados para 1,3-Dipolar cycloaddition
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.
Resumo:
Supramolecular chemistry is a multidisciplinary field which impinges on other disciplines, focusing on the systems made up of a discrete number of assembled molecular subunits. The forces responsible for the spatial organization are intermolecular reversible interactions. The supramolecular architectures I was interested in are Rotaxanes, mechanically-interlocked architectures consisting of a "dumbbell shaped molecule", threaded through a "macrocycle" where the stoppers at the end of the dumbbell prevent disassociation of components and catenanes, two or more interlocked macrocycles which cannot be separated without breaking the covalent bonds. The aim is to introduce one or more paramagnetic units to use the ESR spectroscopy to investigate complexation properties of these systems cause this technique works in the same time scale of supramolecular assemblies. Chapter 1 underlines the main concepts upon which supramolecular chemistry is based, clarifying the nature of supramolecular interactions and the principles of host-guest chemistry. In chapter 2 it is pointed out the use of ESR spectroscopy to investigate the properties of organic non-covalent assemblies in liquid solution by spin labels and spin probes. The chapter 3 deals with the synthesis of a new class of p-electron-deficient tetracationic cyclophane ring, carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety. In the chapter 4, the Huisgen 1,3-dipolar cycloaddition is exploited to synthesize rotaxanes having paramagnetic cyclodextrins as wheels. In the chapter 5, the catalysis of Huisgen’s cycloaddition by CB[6] is exploited to synthesize paramagnetic CB[6]-based [3]-rotaxanes. In the chapter 6 I reported the first preliminary studies of Actinoid series as a new class of templates in catenanes’ synthesis. Being f-block elements, so having the property of expanding the valence state, they constitute promising candidates as chemical templates offering the possibility to create a complex with coordination number beyond 6.
Resumo:
Cancer represents one of the most relevant and widespread diseases in the modern age. In this context, integrin receptors are important for the interactions of cells with extracellular matrix and for the development of both inflammation and carcinogenic phenomena. There are many tricks to improve the bioactivity and receptor selectivity of exogenous ligands; one of these is to integrate the amino acid sequence into a cyclic peptide to restrict its conformational space. Another approach is to develop small peptidomimetic molecules in order to enhance the molecular stability and open the way to versatile synthetic strategies. Starting from isoxazoline-based peptidomimetic molecules we recently reported, in this thesis we are going to present the synthesis of new integrin ligands obtained by modifying or introducing appendages on already reported structures. Initially, we are going to introduce the synthesis of linear and cyclic α-dehydro-β-amino acids as scaffolds for the preparation of bioactive peptidomimetics. Subsequently, we are going to present the construction of small molecule ligands (SMLs) based delivery systems performed starting from a polyfunctionalised isoxazoline scaffold, whose potency towards αVβ3 and α5β1 integrins has already been established by our research group. In the light of these results and due to the necessity to understand the behaviour of a single enantiomer of the isoxazoline-based compounds, the research group decided to synthesise the enantiopure heterocycle using a 1,3-dipolar cycloaddiction approach. Subsequently, we are going to introduce the synthesis of a Reporting Drug Delivery System composed by a carrier, a first spacer, a linker, a self-immolative system, a second spacer and a latent fluorophore. The last part of this work will describe the results obtained during the internship abroad in Prof. Aggarwal’s laboratory at the University of Bristol. The project was focused on the Mycapolyol A synthesis.