222 resultados para Analisi rischio, vaporizzatori, FMECA, FTA
Resumo:
Environmental Management includes many components, among which we can include Environmental Management Systems (EMS), Environmental Reporting and Analysis, Environmental Information Systems and Environmental Communication. In this work two applications are presented: the developement and implementation of an Environmental Management System in local administrations, according to the European scheme "EMAS", and the analysis of a territorial energy system through scenario building and environmental sustainability assessment. Both applications are linked by the same objective, which is the quest for more scientifically sound elements; in fact, both EMS and energy planning are oftec carachterized by localism and poor comparability. Emergy synthesis, proposed by ecologist H.T. Odum and described in his book "Environmental Accounting: Emergy and Environmental Decision Making" (1996) has been chosen and applied as an environmental evaluation tool, in order complete the analysis with an assessment of the "global value" of goods and processes. In particular, eMergy syntesis has been applied in order to improve the evaluation of the significance of environmental aspects in an EMS, and in order to evaluate the environmental performance of three scenarios of future evolution of the energy system. Regarding EMS, in this work an application of an EMS together with the CLEAR methodology for environmental accounting is discussed, in order to improve the identification of the environmental aspects; data regarding environmental aspects and significant ones for 4 local authorities are also presented, together with a preliminary proposal for the integration of the assessment of the significance of environmental aspects with eMergy synthesis. Regarding the analysis of an energy system, in this work the carachterization of the current situation is presented together with the overall energy balance and the evaluation of the emissions of greenhouse gases; moreover, three scenarios of future evolution are described and discussed. The scenarios have been realized with the support of the LEAP software ("Long Term Energy Alternatives Planning System" by SEI - "Stockholm Environment Institute"). Finally, the eMergy synthesis of the current situation and of the three scenarios is shown.
Resumo:
Down syndrome (DS) or Trisomy 21, occurring in 1/700 and 1/1000 livebirths, is the most common genetic disorder, characterized by a third copy of the human chromosome 21 (Hsa21). DS is associated with various defects, including congenital heart diseases, craniofacial abnormalities, immune system dysfunction, mental retardation (MR), learning and memory deficiency. The phenotypic features in DS are a direct consequence of overexpression of genes located within the triplicated region on Hsa21. In addition to developmental brain abnormalities and disabilities, people with DS by the age of 30-40 have a greatly increased risk of early-onset of Alzheimer’s disease (AD) and an apparent tendency toward premature aging. Many of the immunological anomalies in DS can be enclosed in the spectrum of multiple signs of early senescence. People with DS have an increased vulnerability to oxidative damage and many factors, including amyloid beta protein (Abeta), genotype ApoE4, oxidative stress, mutations in mitochondrial DNA (mtDNA), impairment of antioxidant enzymes, accelerated neuronal cell apoptosis, are related to neuronal degeneration and early aging in DS. SUBJECTS and METHODS: Since 2007 a population of 50 adolescents and adults with DS, 26 males and 24 females (sex-ratio: M/F = 1.08), has been evaluated for the presence of neurological features, biomarkers and genetic factors correlated with neuronal degeneration and premature aging. The control group was determined by the mother and the siblings of the patients. A neuropsychiatric evaluation was obtained from all patients. The levels of thyroid antibodies (antiTg and antiTPO) and of some biochemical markers of oxidative stress, including homocysteine (tHcy), uric acid, cobalamin, folate were measured. All patients, the mother and the siblings were genotyped for ApoE gene. RESULTS: 40% of patients, with a mild prevalence of females aged between 19 and 30 years, showed increased levels of antiTg and antiTPO. The levels of tHcy were normal in 52% patients and mildly increased in 40%; hyperomocysteinemia was associated with normal levels of thyroid antibodies in 75% of patients (p<0.005). The levels of uric acid were elevated in 26%. Our study showed a prevalence of severe MR in patients aged between 1-18 years and over 30 years. Only 3 patients, 2 females and one male, over 30 years of age, showed dementia. According to the literature, the rate of Down left-handers was high (25%) compared to the rest of population and the laterality was associated with increased levels of thyroid antibodies (70%). 21.5% of patients were ApoE4 positive (ApoE4+) with a mean/severe MR. CONCLUSIONS: Until now no biochemical evidence of oxidative damage and no deficiency or alteration of antioxidant function in our patients with DS were found. mtDNA sequencing could show some mutations age-related and associated with oxidative damage and neurocognitive decline in the early aging of DS. The final aim is found predictive markers of early-onset dementia and a target strategy for the prevention and the treatment of diseases caused by oxidative stress. REFERENCES: 1) Rachidi M, Lopes C: “Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.” - Eur J Paediatr Neurol. May;12(3):168-82 (2008). 2) Lott IT, Head E: “Down syndrome and Alzheimer's disease: a link between development and aging.” - Ment Retard Dev Disabil Res Rev, 7(3):172-8 (2001). 3) Lee HC, Wei YH: “Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging.” - Exp Biol Med (Maywood), May;232(5):592-606 (2007).
Resumo:
This work describes the development of a simulation tool which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics. It is a control oriented simulation tool, designed in order to perform both off-line (Software In the Loop) and on-line (Hardware In the Loop) simulation. In the first case the simulation tool can be used in order to optimize Engine Control Unit strategies (as far as regard, for example, the fuel consumption or the performance of the engine), while in the second case it can be used in order to test the control system. In recent years the use of HIL simulations has proved to be very useful in developing and testing of control systems. Hardware In the Loop simulation is a technology where the actual vehicles, engines or other components are replaced by a real time simulation, based on a mathematical model and running in a real time processor. The processor reads ECU (Engine Control Unit) output signals which would normally feed the actuators and, by using mathematical models, provides the signals which would be produced by the actual sensors. The simulation tool, fully designed within Simulink, includes the possibility to simulate the only engine, the transmission and vehicle dynamics and the engine along with the vehicle and transmission dynamics, allowing in this case to evaluate the performance and the operating conditions of the Internal Combustion Engine, once it is installed on a given vehicle. Furthermore the simulation tool includes different level of complexity, since it is possible to use, for example, either a zero-dimensional or a one-dimensional model of the intake system (in this case only for off-line application, because of the higher computational effort). Given these preliminary remarks, an important goal of this work is the development of a simulation environment that can be easily adapted to different engine types (single- or multi-cylinder, four-stroke or two-stroke, diesel or gasoline) and transmission architecture without reprogramming. Also, the same simulation tool can be rapidly configured both for off-line and real-time application. The Matlab-Simulink environment has been adopted to achieve such objectives, since its graphical programming interface allows building flexible and reconfigurable models, and real-time simulation is possible with standard, off-the-shelf software and hardware platforms (such as dSPACE systems).
Resumo:
The vertical profile of aerosol in the planetary boundary layer of the Milan urban area is studied in terms of its development and chemical composition in a high-resolution modelling framework. The period of study spans a week in summer of 2007 (12-18 July), when continuous LIDAR measurements and a limited set of balloon profiles were collected in the frame of the ASI/QUITSAT project. LIDAR observations show a diurnal development of an aerosol plume that lifts early morning surface emissions to the top of the boundary layer, reaching maximum concentration around midday. Mountain breeze from Alps clean the bottom of the aerosol layer, typically leaving a residual layer at around 1500-2000 m which may survive for several days. During the last two days under analysis, a dust layer transported from Sahara reaches the upper layers of Milan area and affects the aerosol vertical distribution in the boundary layer. Simulation from the MM5/CHIMERE modelling system, carried out at 1 km horizontal resolution, qualitatively reproduced the general features of the Milan aerosol layer observed with LIDAR, including the rise and fall of the aersol plume, the residual layer in altitude and the Saharan dust event. The simulation highlighted the importance of nitrates and secondary organics in its composition. Several sensitivity tests showed that main driving factors leading to the dominance of nitrates in the plume are temperature and gas absorption process. A modelling study turn to the analysis of the vertical aerosol profiles distribution and knowledge of the characterization of the PM at a site near the city of Milan is performed using a model system composed by a meteorological model MM5 (V3-6), the mesoscale model from PSU/NCAR and a Chemical Transport Model (CTM) CHIMERE to simulate the vertical aerosol profile. LiDAR continuous observations and balloon profiles collected during two intensive campaigns in summer 2007 and in winter 2008 in the frame of the ASI/QUITSAT project have been used to perform comparisons in order to evaluate the ability of the aerosol chemistry transport model CHIMERE to simulate the aerosols dynamics and compositions in this area. The comparisons of model aerosols with measurements are carried out over a full time period between 12 July 2007 and 18 July 2007. The comparisons demonstrate the ability of the model to reproduce correctly the aerosol vertical distributions and their temporal variability. As detected by the LiDAR, the model during the period considered, predicts a diurnal development of a plume during the morning and a clearing during the afternoon, typically the plume reaches the top of the boundary layer around mid day, in this time CHIMERE produces highest concentrations in the upper levels as detected by LiDAR. The model, moreover can reproduce LiDAR observes enhancement aerosols concentrations above the boundary layer, attributing the phenomena to dust out intrusion. Another important information from the model analysis regard the composition , it predicts that a large part of the plume is composed by nitrate, in particular during 13 and 16 July 2007 , pointing to the model tendency to overestimates the nitrous component in the particular matter vertical structure . Sensitivity study carried out in this work show that there are a combination of different factor which determine the major nitrous composition of the “plume” observed and in particular humidity temperature and the absorption phenomena are the mainly candidate to explain the principal difference in composition simulated in the period object of this study , in particular , the CHIMERE model seems to be mostly sensitive to the absorption process.