93 resultados para grafene , fermioni , dirac , meccanica quantistica , ASPEC
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
Il rapido progresso della tecnologia, lo sviluppo di prodotti altamente sofisticati, la forte competizione globale e l’aumento delle aspettative dei clienti hanno messo nuove pressioni sui produttori per garantire la commercializzazione di beni caratterizzati da una qualità sempre crescente. Sono gli stessi clienti che da anni si aspettano di trovare sul mercato prodotti contraddistinti da un livello estremo di affidabilità e sicurezza. Tutti siamo consapevoli della necessità per un prodotto di essere quanto più sicuro ed affidabile possibile; ma, nonostante siano passati oramai 30 anni di studi e ricerche, quando cerchiamo di quantificare ingegneristicamente queste caratteristiche riconducibili genericamente al termine qualità, oppure quando vogliamo provare a calcolare i benefici concreti che l’attenzione a questi fattori quali affidabilità e sicurezza producono su un business, allora le discordanze restano forti. E le discordanze restano evidenti anche quando si tratta di definire quali siano gli “strumenti più idonei” da utilizzare per migliorare l’affidabilità e la sicurezza di un prodotto o processo. Sebbene lo stato dell’arte internazionale proponga un numero significativo di metodologie per il miglioramento della qualità, tutte in continuo perfezionamento, tuttavia molti di questi strumenti della “Total Quality” non sono concretamente applicabili nella maggior parte delle realtà industriale da noi incontrate. La non applicabilità di queste tecniche non riguarda solo la dimensione più limitata delle aziende italiane rispetto a quelle americane e giapponesi dove sono nati e stati sviluppati questi strumenti, oppure alla poca possibilità di effettuare investimenti massicci in R&D, ma è collegata anche alla difficoltà che una azienda italiana avrebbe di sfruttare opportunamente i risultati sui propri territori e propri mercati. Questo lavoro si propone di sviluppare una metodologia semplice e organica per stimare i livelli di affidabilità e di sicurezza raggiunti dai sistemi produttivi e dai prodotti industriali. Si pone inoltre di andare al di là del semplice sviluppo di una metodologia teorica, per quanto rigorosa e completa, ma di applicare in forma integrata alcuni dei suoi strumenti a casi concreti di elevata valenza industriale. Questa metodologia come anche, più in generale, tutti gli strumenti di miglioramento di affidabilità qui presentati, interessano potenzialmente una vasta gamma di campi produttivi, ma si prestano con particolare efficacia in quei settori dove coesistono elevate produzioni e fortissime esigenze qualitative dei prodotti. Di conseguenza, per la validazione ed applicazione ci si è rivolti al settore dell’automotive, che da sempre risulta particolarmente sensibile ai problemi di miglioramento di affidabilità e sicurezza. Questa scelta ha portato a conclusioni la cui validità va al di là di valori puramente tecnici, per toccare aspetti non secondari di “spendibilità” sul mercato dei risultati ed ha investito aziende di primissimo piano sul panorama industriale italiano.
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
The 3-UPU three degrees of freedom fully parallel manipulator, where U and P are for universal and prismatic pair respectively, is a very well known manipulator that can provide the platform with three degrees of freedom of pure translation, pure rotation or mixed translation and rotation with respect to the base, according to the relative directions of the revolute pair axes (each universal pair comprises two revolute pairs with intersecting and perpendicular axes). In particular, pure translational parallel 3-UPU manipulators (3-UPU TPMs) received great attention. Many studies have been reported in the literature on singularities, workspace, and joint clearance influence on the platform accuracy of this manipulator. However, much work has still to be done to reveal all the features this topology can offer to the designer when different architecture, i.e. different geometry are considered. Therefore, this dissertation will focus on this type of the 3-UPU manipulators. The first part of the dissertation presents six new architectures of the 3-UPU TPMs which offer interesting features to the designer. In the second part, a procedure is presented which is based on some indexes, in order to allows the designer to select the best architecture of the 3-UPU TPMs for a given task. Four indexes are proposed as stiffness, clearance, singularity and size of the manipulator in order to apply the procedure.
Resumo:
The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.
Resumo:
In the present work qualitative aspects of products that fall outside the classic Italian of food production view will be investigated, except for the apricot, a fruit, however, less studied by the methods considered here. The development of computer systems and the advanced software systems dedicated for statistical processing of data, has permitted the application of advanced technologies including the analysis of niche products. The near-infrared spectroscopic analysis was applied to the chemical industry for over twenty years and, subsequently, was applied in food industry with great success for non-destructive in line and off-line analysis. The work that will be presented below range from the use of spectroscopy for the determination of some rheological indices of ice cream applications to the characterization of the main quality indices of apricots, fresh dates, determination of the production areas of pistachio. Next to the spectroscopy will be illustrated different methods of multivariate analysis for spectra interpretation or for the construction of qualitative models of estimation. The thesis is divided into four separate studies that consider the same number of products. Each one of it is introduced by its own premise and ended with its own bibliography. This studies are preceded by a general discussion on the state of art and the basics of NIR spectroscopy.
Resumo:
The study presented in this work deals with the investigation of the effects produced by two common techniques of static balancing on the dynamic performances of closed-chain linkages, taking into account the compliance of the mechanism components. The long-term goal of the research consists in determining an optimal balancing strategy for parallel spatial manipulators. The present contribution is a starting point and it focuses on the planar four-bar linkage, intended as the simplest example of closed-chain mechanism. The elastodynamic behaviour of an unbalanced four-bar linkage and two balanced ones, respectively obtained by mass and elastic balancing, is investigated by means of both numerical simulations and experimental tests. The purpose of this work is to obtain preliminary results, to be refined and broadened in future developments
Resumo:
The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.
Resumo:
This thesis analyzes theoretically and computationally the phenomenon of partial ionization of the substitutional dopants in Silicon Carbide at thermal equilibrium. It is based on the solution of the charge neutrality equation and takes into account the following phenomena: several energy levels in the bandgap; Fermi-Dirac statistics for free carriers; screening effects on the dopant ionization energies; the formation of impurity bands. A self-consistent model and a corresponding simulation software have been realized. A preliminary comparison of our calculations with existing experimental results is carried out.
Resumo:
The present work describes the development of a new body-counter system based on HPGe detectors and installed at IVM of KIT. The goal, achieved, was the improvement of the ability to detect internal contaminations in the human body, especially the ones concerning low-energy emitters and multiple nuclides. The development of the system started with the characterisation of detectors purchased for this specific task, with the optimisation of the different desired measurement configurations following and ending with the installation and check of the results. A new software has been developed to handle the new detectors.