39 resultados para Data-Driven Behavior Modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis is to study how explosive behavior and geophysical signals in a volcanic conduit are related to the development of overpressure in slug-driven eruptions. A first suite of laboratory experiments of gas slugs ascending in analogue conduits was performed. Slugs ascended into a range of analogue liquids and conduit diameters to allow proper scaling to the natural volcanoes. The geometrical variation of the slug in response to the explored variables was parameterised. Volume of gas slug and rheology of the liquid phase revealed the key parameters in controlling slug overpressure at bursting. Founded on these results, a theoretical model to calculate burst overpressure for slug-driven eruptions was developed. The dimensionless approach adopted allowed to apply the model to predict bursting pressure of slugs at Stromboli. Comparison of predicted values with measured data from Stromboli volcano showed that the model can explain the entire spectrum of observed eruptive styles at Stromboli – from low-energy puffing, through normal Strombolian eruptions, up to paroxysmal explosions – as manifestations of a single underlying physical process. Finally, another suite of laboratory experiments was performed to observe oscillatory pressure and forces variations generated during the expansion and bursting of gas slugs ascending in a conduit. Two end-member boundary conditions were imposed at the base of the pipe, simulating slug ascent in closed base (zero magma flux) and open base (constant flux) conduit. At the top of the pipe, a range of boundary conditions that are relevant at a volcanic vent were imposed, going from open to plugged vent. The results obtained illustrate that a change in boundary conditions in the conduit concur to affect the dynamic of slug expansion and burst: an upward flux at the base of the conduit attenuates the magnitude of the pressure transients, while a rheological stiffening in the top-most region of conduit changes dramatically the magnitude of the observed pressure transients, favoring a sudden, and more energetic pressure release into the overlying atmosphere. Finally, a discussion on the implication of changing boundary on the oscillatory processes generated at the volcanic scale is also given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this Thesis is to obtain a better understanding of the mechanical behavior of the active Alto Tiberina normal fault (ATF). Integrating geological, geodetic and seismological data, we perform 2D and 3D quasi-static and dynamic mechanical models to simulate the interseismic phase and rupture dynamic of the ATF. Effects of ATF locking depth, synthetic and antithetic fault activity, lithology and realistic fault geometries are taken in account. The 2D and 3D quasi-static model results suggest that the deformation pattern inferred by GPS data is consistent with a very compliant ATF zone (from 5 to 15 km) and Gubbio fault activity. The presence of the ATF compliant zone is a first order condition to redistribute the stress in the Umbria-Marche region; the stress bipartition between hanging wall (high values) and footwall (low values) inferred by the ATF zone activity could explain the microseismicity rates that are higher in the hanging wall respect to the footwall. The interseismic stress build-up is mainly located along the Gubbio fault zone and near ATF patches with higher dip (30°

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this Thesis a series of numerical models for the evaluation of the seasonal performance of reversible air-to-water heat pump systems coupled to residential and non-residential buildings are presented. The exploitation of the energy saving potential linked to the adoption of heat pumps is a hard task for designers due to the influence on their energy performance of several factors, like the external climate variability, the heat pump modulation capacity, the system control strategy and the hydronic loop configuration. The aim of this work is to study in detail all these aspects. In the first part of this Thesis a series of models which use a temperature class approach for the prediction of the seasonal performance of reversible air source heat pumps are shown. An innovative methodology for the calculation of the seasonal performance of an air-to-water heat pump has been proposed as an extension of the procedure reported by the European standard EN 14825. This methodology can be applied not only to air-to-water single-stage heat pumps (On-off HPs) but also to multi-stage (MSHPs) and inverter-driven units (IDHPs). In the second part, dynamic simulation has been used with the aim to optimize the control systems of the heat pump and of the HVAC plant. A series of dynamic models, developed by means of TRNSYS, are presented to study the behavior of On-off HPs, MSHPs and IDHPs. The main goal of these dynamic simulations is to show the influence of the heat pump control strategies and of the lay-out of the hydronic loop used to couple the heat pump to the emitters on the seasonal performance of the system. A particular focus is given to the modeling of the energy losses linked to on-off cycling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coastal ocean is a complex environment with extremely dynamic processes that require a high-resolution and cross-scale modeling approach in which all hydrodynamic fields and scales are considered integral parts of the overall system. In the last decade, unstructured-grid models have been used to advance in seamless modeling between scales. On the other hand, the data assimilation methodologies to improve the unstructured-grid models in the coastal seas have been developed only recently and need significant advancements. Here, we link the unstructured-grid ocean modeling to the variational data assimilation methods. In particular, we show results from the modeling system SANIFS based on SHYFEM fully-baroclinic unstructured-grid model interfaced with OceanVar, a state-of-art variational data assimilation scheme adopted for several systems based on a structured grid. OceanVar implements a 3DVar DA scheme. The combination of three linear operators models the background error covariance matrix. The vertical part is represented using multivariate EOFs for temperature, salinity, and sea level anomaly. The horizontal part is assumed to be Gaussian isotropic and is modeled using a first-order recursive filter algorithm designed for structured and regular grids. Here we introduced a novel recursive filter algorithm for unstructured grids. A local hydrostatic adjustment scheme models the rapidly evolving part of the background error covariance. We designed two data assimilation experiments using SANIFS implementation interfaced with OceanVar over the period 2017-2018, one with only temperature and salinity assimilation by Argo profiles and the second also including sea level anomaly. The results showed a successful implementation of the approach and the added value of the assimilation for the active tracer fields. While looking at the broad basin, no significant improvements are highlighted for the sea level, requiring future investigations. Furthermore, a Machine Learning methodology based on an LSTM network has been used to predict the model SST increments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.