22 resultados para models of computation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In silico methods, such as musculoskeletal modelling, may aid the selection of the optimal surgical treatment for highly complex pathologies such as scoliosis. Many musculoskeletal models use a generic, simplified representation of the intervertebral joints, which are fundamental to the flexibility of the spine. Therefore, to model and simulate the spine, a suitable representation of the intervertebral joint is crucial. The aim of this PhD was to characterise specimen-specific models of the intervertebral joint for multi-body models from experimental datasets. First, the project investigated the characterisation of a specimen-specific lumped parameter model of the intervertebral joint from an experimental dataset of a four-vertebra lumbar spine segment. Specimen-specific stiffnesses were determined with an optimisation method. The sensitivity of the parameters to the joint pose was investigate. Results showed the stiffnesses and predicted motions were highly depended on both the joint pose. Following the first study, the method was reapplied to another dataset that included six complete lumbar spine segments under three different loading conditions. Specimen-specific uniform stiffnesses across joint levels and level-dependent stiffnesses were calculated by optimisation. Specimen-specific stiffness show high inter-specimen variability and were also specific to the loading condition. Level-dependent stiffnesses are necessary for accurate kinematic predictions and should be determined independently of one another. Secondly, a framework to create subject-specific musculoskeletal models of individuals with severe scoliosis was developed. This resulted in a robust codified pipeline for creating subject-specific, severely scoliotic spine models from CT data. In conclusion, this thesis showed that specimen-specific intervertebral joint stiffnesses were highly sensitive to joint pose definition and the importance of level-dependent optimisation. Further, an open-source codified pipeline to create patient-specific scoliotic spine models from CT data was released. These studies and this pipeline can facilitate the specimen-specific characterisation of the scoliotic intervertebral joint and its incorporation into scoliotic musculoskeletal spine models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is mainly devoted to show how EEG data and related phenomena can be reproduced and analyzed using mathematical models of neural masses (NMM). The aim is to describe some of these phenomena, to show in which ways the design of the models architecture is influenced by such phenomena, point out the difficulties of tuning the dozens of parameters of the models in order to reproduce the activity recorded with EEG systems during different kinds of experiments, and suggest some strategies to cope with these problems. In particular the chapters are organized as follows: chapter I gives a brief overview of the aims and issues addressed in the thesis; in chapter II the main characteristics of the cortical column, of the EEG signal and of the neural mass models will be presented, in order to show the relationships that hold between these entities; chapter III describes a study in which a NMM from the literature has been used to assess brain connectivity changes in tetraplegic patients; in chapter IV a modified version of the NMM is presented, which has been developed to overcomes some of the previous version’s intrinsic limitations; chapter V describes a study in which the new NMM has been used to reproduce the electrical activity evoked in the cortex by the transcranial magnetic stimulation (TMS); chapter VI presents some preliminary results obtained in the simulation of the neural rhythms associated with memory recall; finally, some general conclusions are drawn in chapter VII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GIST) are the most common di tumors of the gastrointestinal tract, arising from the interstitial cells of Cajal (ICCs) or their precursors. The vast majority of GISTs (75–85% of GIST) harbor KIT or PDGFRA mutations. A small percentage of GIST (about 10‐15%) do not harbor any of these driver mutations and have historically been called wild-type (WT). Among them, from 20% to 40% show loss of function of the succinate dehydrogenase complex (SDH), also defined as SDH‐deficient GIST. SDH-deficient GISTs display distinctive clinical and pathological features, and can be sporadic or associated with Carney triad or Carney-Stratakis syndrome. These tumors arise most frequently in the stomach with predilection to distal stomach and antrum, have a multi-nodular growth, display a histological epithelioid phenotype, and present frequent lympho-vascular invasion. Occurrence of lymph node metastases and indolent course are representative features of SDH-deficient GISTs. This subset of GIST is known for the immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals the loss of function of the entire SDH-complex. The overall aim of my PhD project consists of the comprehensive characterization of SDH deficient GIST. Throughout the project, clinical, molecular and cellular characterizations were performed using next-generation sequencing technologies (NGS), that has the potential to allow the identification of molecular patterns useful for the diagnosis and development of novel treatments. Moreover, while there are many different cell lines and preclinical models of KIT/PDGFRA mutant GIST, no reliable cell model of SDH-deficient GIST has currently been developed, which could be used for studies on tumor evolution and in vitro assessments of drug response. Therefore, another aim of this project was to develop a pre-clinical model of SDH deficient GIST using the novel technology of induced pluripotent stem cells (iPSC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical models of stellar systems represent a powerful tool to study their internal structure and dynamics, to interpret the observed morphological and kinematical fields, and also to support numerical simulations of their evolution. We present a method especially designed to build axisymmetric Jeans models of galaxies, assumed as stationary and collisionless stellar systems. The aim is the development of a rigorous and flexible modelling procedure of multicomponent galaxies, composed of different stellar and dark matter distributions, and a central supermassive black hole. The stellar components, in particular, are intended to represent different galaxy structures, such as discs, bulges, halos, and can then have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. The theoretical framework supporting the modelling procedure is presented, with the introduction of a suitable nomenclature, and its numerical implementation is discussed, with particular reference to the numerical code JASMINE2, developed for this purpose. We propose an approach for efficiently scaling the contributions in mass, luminosity, and rotational support, of the different matter components, allowing for fast and flexible explorations of the model parameter space. We also offer different methods of the computation of the gravitational potentials associated of the density components, especially convenient for their easier numerical tractability. A few galaxy models are studied, showing internal, and projected, structural and dynamical properties of multicomponent galaxies, with a focus on axisymmetric early-type galaxies with complex kinematical morphologies. The application of galaxy models to the study of initial conditions for hydro-dynamical and $N$-body simulations of galaxy evolution is also addressed, allowing in particular to investigate the large number of interesting combinations of the parameters which determine the structure and dynamics of complex multicomponent stellar systems.