34 resultados para Statistical mixture-design optimization
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
The continuous increase of genome sequencing projects produced a huge amount of data in the last 10 years: currently more than 600 prokaryotic and 80 eukaryotic genomes are fully sequenced and publically available. However the sole sequencing process of a genome is able to determine just raw nucleotide sequences. This is only the first step of the genome annotation process that will deal with the issue of assigning biological information to each sequence. The annotation process is done at each different level of the biological information processing mechanism, from DNA to protein, and cannot be accomplished only by in vitro analysis procedures resulting extremely expensive and time consuming when applied at a this large scale level. Thus, in silico methods need to be used to accomplish the task. The aim of this work was the implementation of predictive computational methods to allow a fast, reliable, and automated annotation of genomes and proteins starting from aminoacidic sequences. The first part of the work was focused on the implementation of a new machine learning based method for the prediction of the subcellular localization of soluble eukaryotic proteins. The method is called BaCelLo, and was developed in 2006. The main peculiarity of the method is to be independent from biases present in the training dataset, which causes the over‐prediction of the most represented examples in all the other available predictors developed so far. This important result was achieved by a modification, made by myself, to the standard Support Vector Machine (SVM) algorithm with the creation of the so called Balanced SVM. BaCelLo is able to predict the most important subcellular localizations in eukaryotic cells and three, kingdom‐specific, predictors were implemented. In two extensive comparisons, carried out in 2006 and 2008, BaCelLo reported to outperform all the currently available state‐of‐the‐art methods for this prediction task. BaCelLo was subsequently used to completely annotate 5 eukaryotic genomes, by integrating it in a pipeline of predictors developed at the Bologna Biocomputing group by Dr. Pier Luigi Martelli and Dr. Piero Fariselli. An online database, called eSLDB, was developed by integrating, for each aminoacidic sequence extracted from the genome, the predicted subcellular localization merged with experimental and similarity‐based annotations. In the second part of the work a new, machine learning based, method was implemented for the prediction of GPI‐anchored proteins. Basically the method is able to efficiently predict from the raw aminoacidic sequence both the presence of the GPI‐anchor (by means of an SVM), and the position in the sequence of the post‐translational modification event, the so called ω‐site (by means of an Hidden Markov Model (HMM)). The method is called GPIPE and reported to greatly enhance the prediction performances of GPI‐anchored proteins over all the previously developed methods. GPIPE was able to predict up to 88% of the experimentally annotated GPI‐anchored proteins by maintaining a rate of false positive prediction as low as 0.1%. GPIPE was used to completely annotate 81 eukaryotic genomes, and more than 15000 putative GPI‐anchored proteins were predicted, 561 of which are found in H. sapiens. In average 1% of a proteome is predicted as GPI‐anchored. A statistical analysis was performed onto the composition of the regions surrounding the ω‐site that allowed the definition of specific aminoacidic abundances in the different considered regions. Furthermore the hypothesis that compositional biases are present among the four major eukaryotic kingdoms, proposed in literature, was tested and rejected. All the developed predictors and databases are freely available at: BaCelLo http://gpcr.biocomp.unibo.it/bacello eSLDB http://gpcr.biocomp.unibo.it/esldb GPIPE http://gpcr.biocomp.unibo.it/gpipe
Resumo:
The running innovation processes of the microwave transistor technologies, used in the implementation of microwave circuits, have to be supported by the study and development of proper design methodologies which, depending on the applications, will fully exploit the technology potentialities. After the choice of the technology to be used in the particular application, the circuit designer has few degrees of freedom when carrying out his design; in the most cases, due to the technological constrains, all the foundries develop and provide customized processes optimized for a specific performance such as power, low-noise, linearity, broadband etc. For these reasons circuit design is always a “compromise”, an investigation for the best solution to reach a trade off between the desired performances. This approach becomes crucial in the design of microwave systems to be used in satellite applications; the tight space constraints impose to reach the best performances under proper electrical and thermal de-rated conditions, respect to the maximum ratings provided by the used technology, in order to ensure adequate levels of reliability. In particular this work is about one of the most critical components in the front-end of a satellite antenna, the High Power Amplifier (HPA). The HPA is the main power dissipation source and so the element which mostly engrave on space, weight and cost of telecommunication apparatus; it is clear from the above reasons that design strategies addressing optimization of power density, efficiency and reliability are of major concern. Many transactions and publications demonstrate different methods for the design of power amplifiers, highlighting the availability to obtain very good levels of output power, efficiency and gain. Starting from existing knowledge, the target of the research activities summarized in this dissertation was to develop a design methodology capable optimize power amplifier performances complying all the constraints imposed by the space applications, tacking into account the thermal behaviour in the same manner of the power and the efficiency. After a reminder of the existing theories about the power amplifier design, in the first section of this work, the effectiveness of the methodology based on the accurate control of the dynamic Load Line and her shaping will be described, explaining all steps in the design of two different kinds of high power amplifiers. Considering the trade-off between the main performances and reliability issues as the target of the design activity, we will demonstrate that the expected results could be obtained working on the characteristics of the Load Line at the intrinsic terminals of the selected active device. The methodology proposed in this first part is based on the assumption that designer has the availability of an accurate electrical model of the device; the variety of publications about this argument demonstrates that it is so difficult to carry out a CAD model capable to taking into account all the non-ideal phenomena which occur when the amplifier operates at such high frequency and power levels. For that, especially for the emerging technology of Gallium Nitride (GaN), in the second section a new approach for power amplifier design will be described, basing on the experimental characterization of the intrinsic Load Line by means of a low frequency high power measurements bench. Thanks to the possibility to develop my Ph.D. in an academic spin-off, MEC – Microwave Electronics for Communications, the results of this activity has been applied to important research programs requested by space agencies, with the aim support the technological transfer from universities to industrial world and to promote a science-based entrepreneurship. For these reasons the proposed design methodology will be explained basing on many experimental results.
Resumo:
The aspartic protease BACE1 (β-amyloid precursor protein cleaving enzyme, β-secretase) is recognized as one of the most promising targets in the treatment of Alzheimer's disease (AD). The accumulation of β-amyloid peptide (Aβ) in the brain is a major factor in the pathogenesis of AD. Aβ is formed by initial cleavage of β-amyloid precursor protein (APP) by β-secretase, therefore BACE1 inhibition represents one of the therapeutic approaches to control progression of AD, by preventing the abnormal generation of Aβ. For this reason, in the last decade, many research efforts have focused at the identification of new BACE1 inhibitors as drug candidates. Generally, BACE1 inhibitors are grouped into two families: substrate-based inhibitors, designed as peptidomimetic inhibitors, and non-peptidomimetic ones. The research on non-peptidomimetic small molecules BACE1 inhibitors remains the most interesting approach, since these compounds hold an improved bioavailability after systemic administration, due to a good blood-brain barrier permeability in comparison to peptidomimetic inhibitors. Very recently, our research group discovered a new promising lead compound for the treatment of AD, named lipocrine, a hybrid derivative between lipoic acid and the AChE inhibitor (AChEI) tacrine, characterized by a tetrahydroacridinic moiety. Lipocrine is one of the first compounds able to inhibit the catalytic activity of AChE and AChE-induced amyloid-β aggregation and to protect against reactive oxygen species. Due to this interesting profile, lipocrine was also evaluated for BACE1 inhibitory activity, resulting in a potent lead compound for BACE1 inhibition. Starting from this interesting profile, a series of tetrahydroacridine analogues were synthesised varying the chain length between the two fragments. Moreover, following the approach of combining in a single molecule two different pharmacophores, we designed and synthesised different compounds bearing the moieties of known AChEIs (rivastigmine and caproctamine) coupled with lipoic acid, since it was shown that dithiolane group is an important structural feature of lipocrine for the optimal inhibition of BACE1. All the tetrahydroacridines, rivastigmine and caproctamine-based compounds, were evaluated for BACE1 inhibitory activity in a FRET (fluorescence resonance energy transfer) enzymatic assay (test A). With the aim to enhancing the biological activity of the lead compound, we applied the molecular simplification approach to design and synthesize novel heterocyclic compounds related to lipocrine, in which the tetrahydroacridine moiety was replaced by 4-amino-quinoline or 4-amino-quinazoline rings. All the synthesized compounds were also evaluated in a modified FRET enzymatic assay (test B), changing the fluorescent substrate for enzymatic BACE1 cleavage. This test method guided deep structure-activity relationships for BACE1 inhibition on the most promising quinazoline-based derivatives. By varying the substituent on the 2-position of the quinazoline ring and by replacing the lipoic acid residue in lateral chain with different moieties (i.e. trans-ferulic acid, a known antioxidant molecule), a series of quinazoline derivatives were obtained. In order to confirm inhibitory activity of the most active compounds, they were evaluated with a third FRET assay (test C) which, surprisingly, did not confirm the previous good activity profiles. An evaluation study of kinetic parameters of the three assays revealed that method C is endowed with the best specificity and enzymatic efficiency. Biological evaluation of the modified 2,4-diamino-quinazoline derivatives measured through the method C, allow to obtain a new lead compound bearing the trans-ferulic acid residue coupled to 2,4-diamino-quinazoline core endowed with a good BACE1 inhibitory activity (IC50 = 0.8 mM). We reported on the variability of the results in the three different FRET assays that are known to have some disadvantages in term of interference rates that are strongly dependent on compound properties. The observed results variability could be also ascribed to different enzyme origin, varied substrate and different fluorescent groups. The inhibitors should be tested on a parallel screening in order to have a more reliable data prior to be tested into cellular assay. With this aim, preliminary cellular BACE1 inhibition assay carried out on lipocrine confirmed a good cellular activity profile (EC50 = 3.7 mM) strengthening the idea to find a small molecule non-peptidomimetic compound as BACE1 inhibitor. In conclusion, the present study allowed to identify a new lead compound endowed with BACE1 inhibitory activity in submicromolar range. Further lead optimization to the obtained derivative is needed in order to obtain a more potent and a selective BACE1 inhibitor based on 2,4-diamino-quinazoline scaffold. A side project related to the synthesis of novel enzymatic inhibitors of BACE1 in order to explore the pseudopeptidic transition-state isosteres chemistry was carried out during research stage at Università de Montrèal (Canada) in Hanessian's group. The aim of this work has been the synthesis of the δ-aminocyclohexane carboxylic acid motif with stereochemically defined substitution to incorporating such a constrained core in potential BACE1 inhibitors. This fragment, endowed with reduced peptidic character, is not known in the context of peptidomimetic design. In particular, we envisioned an alternative route based on an organocatalytic asymmetric conjugate addition of nitroalkanes to cyclohexenone in presence of D-proline and trans-2,5-dimethylpiperazine. The enantioenriched obtained 3-(α-nitroalkyl)-cyclohexanones were further functionalized to give the corresponding δ-nitroalkyl cyclohexane carboxylic acids. These intermediates were elaborated to the target structures 3-(α-aminoalkyl)-1-cyclohexane carboxylic acids in a new readily accessible way.
Resumo:
In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.
Resumo:
Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.
Resumo:
The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.
Resumo:
This thesis starts showing the main characteristics and application fields of the AlGaN/GaN HEMT technology, focusing on reliability aspects essentially due to the presence of low frequency dispersive phenomena which limit in several ways the microwave performance of this kind of devices. Based on an equivalent voltage approach, a new low frequency device model is presented where the dynamic nonlinearity of the trapping effect is taken into account for the first time allowing considerable improvements in the prediction of very important quantities for the design of power amplifier such as power added efficiency, dissipated power and internal device temperature. An innovative and low-cost measurement setup for the characterization of the device under low-frequency large-amplitude sinusoidal excitation is also presented. This setup allows the identification of the new low frequency model through suitable procedures explained in detail. In this thesis a new non-invasive empirical method for compact electrothermal modeling and thermal resistance extraction is also described. The new contribution of the proposed approach concerns the non linear dependence of the channel temperature on the dissipated power. This is very important for GaN devices since they are capable of operating at relatively high temperatures with high power densities and the dependence of the thermal resistance on the temperature is quite relevant. Finally a novel method for the device thermal simulation is investigated: based on the analytical solution of the tree-dimensional heat equation, a Visual Basic program has been developed to estimate, in real time, the temperature distribution on the hottest surface of planar multilayer structures. The developed solver is particularly useful for peak temperature estimation at the design stage when critical decisions about circuit design and packaging have to be made. It facilitates the layout optimization and reliability improvement, allowing the correct choice of the device geometry and configuration to achieve the best possible thermal performance.
Resumo:
This thesis deal with the design of advanced OFDM systems. Both waveform and receiver design have been treated. The main scope of the Thesis is to study, create, and propose, ideas and novel design solutions able to cope with the weaknesses and crucial aspects of modern OFDM systems. Starting from the the transmitter side, the problem represented by low resilience to non-linear distortion has been assessed. A novel technique that considerably reduces the Peak-to-Average Power Ratio (PAPR) yielding a quasi constant signal envelope in the time domain (PAPR close to 1 dB) has been proposed.The proposed technique, named Rotation Invariant Subcarrier Mapping (RISM),is a novel scheme for subcarriers data mapping,where the symbols belonging to the modulation alphabet are not anchored, but maintain some degrees of freedom. In other words, a bit tuple is not mapped on a single point, rather it is mapped onto a geometrical locus, which is totally or partially rotation invariant. The final positions of the transmitted complex symbols are chosen by an iterative optimization process in order to minimize the PAPR of the resulting OFDM symbol. Numerical results confirm that RISM makes OFDM usable even in severe non-linear channels. Another well known problem which has been tackled is the vulnerability to synchronization errors. Indeed in OFDM system an accurate recovery of carrier frequency and symbol timing is crucial for the proper demodulation of the received packets. In general, timing and frequency synchronization is performed in two separate phases called PRE-FFT and POST-FFT synchronization. Regarding the PRE-FFT phase, a novel joint symbol timing and carrier frequency synchronization algorithm has been presented. The proposed algorithm is characterized by a very low hardware complexity, and, at the same time, it guarantees very good performance in in both AWGN and multipath channels. Regarding the POST-FFT phase, a novel approach for both pilot structure and receiver design has been presented. In particular, a novel pilot pattern has been introduced in order to minimize the occurrence of overlaps between two pattern shifted replicas. This allows to replace conventional pilots with nulls in the frequency domain, introducing the so called Silent Pilots. As a result, the optimal receiver turns out to be very robust against severe Rayleigh fading multipath and characterized by low complexity. Performance of this approach has been analytically and numerically evaluated. Comparing the proposed approach with state of the art alternatives, in both AWGN and multipath fading channels, considerable performance improvements have been obtained. The crucial problem of channel estimation has been thoroughly investigated, with particular emphasis on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSSs). In this contest our contribution is twofold, from the theoretical side, we derived lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy,from the receiver design we proposed novel MSS selection strategies which have been shown to approach these MSE lower bounds, and outperformed the state-of-the-art alternatives. Finally, the possibility of using of Single Carrier Frequency Division Multiple Access (SC-FDMA) in the Broadband Satellite Return Channel has been assessed. Notably, SC-FDMA is able to improve the physical layer spectral efficiency with respect to single carrier systems, which have been used so far in the Return Channel Satellite (RCS) standards. However, it requires a strict synchronization and it is also sensitive to phase noise of local radio frequency oscillators. For this reason, an effective pilot tone arrangement within the SC-FDMA frame, and a novel Joint Multi-User (JMU) estimation method for the SC-FDMA, has been proposed. As shown by numerical results, the proposed scheme manages to satisfy strict synchronization requirements and to guarantee a proper demodulation of the received signal.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
Resumo:
Among the scientific objectives addressed by the Radio Science Experiment hosted on board the ESA mission BepiColombo is the retrieval of the rotational state of planet Mercury. In fact, the estimation of the obliquity and the librations amplitude were proven to be fundamental for constraining the interior composition of Mercury. This is accomplished by the Mercury Orbiter Radio science Experiment (MORE) via a strict interaction among different payloads thus making the experiment particularly challenging. The underlying idea consists in capturing images of the same landmark on the surface of the planet in different epochs in order to observe a displacement of the identified features with respect to a nominal rotation which allows to estimate the rotational parameters. Observations must be planned accurately in order to obtain image pairs carrying the highest information content for the following estimation process. This is not a trivial task especially in light of the several dynamical constraints involved. Another delicate issue is represented by the pattern matching process between image pairs for which the lowest correlation errors are desired. The research activity was conducted in the frame of the MORE rotation experiment and addressed the design and implementation of an end-to-end simulator of the experiment with the final objective of establishing an optimal science planning of the observations. In the thesis, the implementation of the singular modules forming the simulator is illustrated along with the simulations performed. The results obtained from the preliminary release of the optimization algorithm are finally presented although the software implemented is only at a preliminary release and will be improved and refined in the future also taking into account the developments of the mission.
Resumo:
DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.
Resumo:
Widespread occurrence of pharmaceuticals residues has been reported in aquatic ecosystems. However, their toxic effects on aquatic biota remain unclear. Generally, the acute toxicity has been assessed in laboratory experiments, while chronic toxicity studies have rarely been performed. Of importance appears also the assessment of mixture effects, since pharmaceuticals never occur in waters alone. The aim of the present work is to evaluate acute and chronic toxic response in the crustacean Daphnia magna exposed to single pharmaceuticals and mixtures. We tested fluoxetine, a SSRI widely prescribed as antidepressant, and propranolol, a non selective β-adrenergic receptor-blocking agent used to treat hypertension. Acute immobilization and chronic reproduction tests were performed according to OECD guidelines 202 and 211, respectively. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design with concentrations based on Toxic Units. The conceptual model of Concentration Addition was adopted in this study, as we assumed that the mixture effect mirrors the sum of the single substances for compounds having similar mode of action. The MixTox statistical method was applied to analyze the experimental results. Results showed a significant deviation from CA model that indicated antagonism between chemicals in both the acute and the chronic mixture tests. The study was integrated assessing the effects of fluoxetine on a battery of biomarkers. We wanted to evaluate the organism biological vulnerability caused by low concentrations of pharmaceutical occurring in the aquatic environment. We assessed the acetylcholinesterase and glutathione s-transferase enzymatic activities and the malondialdehyde production. No treatment induced significant alteration of biomarkers with respect to the control. Biological assays and the MixTox model application proved to be useful tools for pharmaceutical risk assessment. Although promising, the application of biomarkers in Daphnia magna needs further elucidation.
Resumo:
Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.
Resumo:
A design can be defined as context-sensitive when it achieves effective technical and functional transportation solutions, while preserving and enhancing natural environments and minimizing impacts on local communities. Traffic noise is one of the most critical environmental impacts of transportation infrastructure and it affects both humans and ecosystems. Tire/pavement noise is caused by a set of interactions at the contact patch and it is the predominant source of road noise at the regular traffic speeds. Wearing course characteristics affect tire/pavement noise through various mechanisms. Furthermore, acoustic performance of road pavements varies over time and it is influenced by both aging and temperature. Three experimentations have been carried out to evaluate wearing course characteristics effects on tire/pavement noise. The first study involves the evaluation of skid resistance, surface texture and tire/pavement noise of an innovative application of multipurpose cold-laid microsurfacing. The second one involves the evaluation of the surface and acoustic characteristics of the different pavement sections of the test track of the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo. In the third study, a set of highway sections have been selected in Southern Ontario with various types of pavements. Noise measurements were carried out by means of the Statistical Pass-by (SPB) method in the first case study, whereas in the second and in the third one, Close-proximity (CPX) and the On-Board Sound Intensity (OBSI) methods have been performed in parallel. Test results have contributed to understand the effects of pavement materials, temperature and aging on tire/pavement noise. Negligible correlation was found between surface texture and roughness with noise. As a general trend, aged and stiffer materials have shown to provide higher noise levels than newer and less stiff ones. Noise levels were also observed to be higher with temperature increase.