22 resultados para Mixed integer non-linear programming (MINLP)
Resumo:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
Resumo:
This thesis addresses the formulation of a referee assignment problem for the Italian Volleyball Serie A Championships. The problem has particular constraints such as a referee must be assigned to different teams in a given period of times, and the minimal/maximal level of workload for each referee is obtained by considering cost and profit in the objective function. The problem has been solved through an exact method by using an integer linear programming formulation and a clique based decomposition for improving the computing time. Extensive computational experiments on real-world instances have been performed to determine the effectiveness of the proposed approach.
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.
A farm-level programming model to compare the atmospheric impact of conventional and organic farming
Resumo:
A model is developed to represent the activity of a farm using the method of linear programming. Two are the main components of the model, the balance of soil fertility and the livestock nutrition. According to the first, the farm is supposed to have a total requirement of nitrogen, which is to be accomplished either through internal sources (manure) or through external sources (fertilisers). The second component describes the animal husbandry as having a nutritional requirement which must be satisfied through the internal production of arable crops or the acquisition of feed from the market. The farmer is supposed to maximise total net income from the agricultural and the zoo-technical activities by choosing one rotation among those available for climate and acclivity. The perspective of the analysis is one of a short period: the structure of the farm is supposed to be fixed without possibility to change the allocation of permanent crops and the amount of animal husbandry. The model is integrated with an environmental module that describes the role of the farm within the carbon-nitrogen cycle. On the one hand the farm allows storing carbon through the photosynthesis of the plants and the accumulation of carbon in the soil; on the other some activities of the farm emit greenhouse gases into the atmosphere. The model is tested for some representative farms of the Emilia-Romagna region, showing to be capable to give different results for conventional and organic farming and providing first results concerning the different atmospheric impact. Relevant data about the representative farms and the feasible rotations are extracted from the FADN database, with an integration of the coefficients from the literature.
Resumo:
This Ph.D. project aimed to the development and improvement of analytical solutions for control of quality and authenticity of virgin olive oils. According to this main objective, different research activities were carried out: concerning the quality control of olive oil, two of the official parameters defined by regulations (free acidity and fatty acid ethyl esters) were taken into account, and more sustainable and easier analytical solutions were developed and validated in-house. Regarding authenticity, two different issues were faced: verification of the geographical origin of extra virgin (EVOOs) and virgin olive oils (VOOs), and assessment of soft-deodorized oils illegally mixed with EVOOs. About fatty acid ethyl esters, a revised method based on the application of off-line HPLC-GC-FID (with PTV injector), revising both the preparative phase and the GC injector required in the official method, was developed. Next, the method was in-house validated evaluating several parameters. Concerning free acidity, a portable system suitable for in-situ measurements of VOO free acidity was developed and in-house validated. Its working principle is based on the estimation of the olive oil free acidity by measuring the conductance of an emulsion between a hydro-alcoholic solution and the sample to be tested. The procedure is very quick and easy and, therefore, suitable for people without specific training. Another study developed during the Ph.D. was about the application of flash gas chromatography for volatile compounds analysis, combined with untargeted chemometric data elaborations, for discrimination of EVOOs and VOOs of different geographical origin. A set of 210 samples coming from different EU member states and extra-EU countries were collected and analyzed. Data were elaborated applying two different classification techniques, one linear (PLS-DA) and one non-linear (ANN). Finally, a preliminary study about the application of GC-IMS (Gas Chromatograph - Ion Mobility Spectrometer) for assessment of soft-deodorized olive oils was carried out.
Resumo:
This thesis deals with optimization techniques and modeling of vehicular networks. Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user. Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.
Resumo:
This PhD thesis aimed to assess the status of common sole, one of the main commercial stocks in the Adriatic Sea, using a mix of conventional and innovative techniques to provide more reliable estimates of stock status compared to past advice. First, a meta-analysis was carried out using data-poor assessment model to analyze the whole catch assemblage of rapido fishery. The outcomes were used to estimate rebuilding time and forecast catches under different harvest control rule scenarios, with a reduction of 20% of fishing effort being suggested as a way to allow most of the species to recover to sustainable levels. Secondly, an ensemble of data-rich assessment models was developed to better incorporate uncertainty by using alternative hypotheses of main parameters. This was the first time an ensemble of models has been used in the Mediterranean to provide management advice. Consistent with data-poor analysis results, the ensemble outcomes indicated that the common sole stock was showing a recovering trend probably due to the effective management actions underway in the area rather than the moderate effort reduction according to the actual management plan. Moreover, back-calculation measurements were used to fit and compare monophasic and biphasic growth curves through the use of non-linear mixed effects models. The analyses revealed that the fitting of the biphasic curve was superior, confirming the theory that growth in size would decrease as a consequence of reproductive effort. A stock assessment simulation showed how the use of the monophasic pattern would result in a critical overestimation of biomass that could lead to a greater risk of overfishing. As a final step, a simulation-testing procedure was applied to determine the best performing reference points using stock-specific characteristic. The procedure could be routinely adopted to increase transparency in reference points calculation enhancing the credibility of scientific advice.