23 resultados para Context-Aware and Adaptable Architectures
Resumo:
This thesis deals with Context Aware Services, Smart Environments, Context Management and solutions for Devices and Service Interoperability. Multi-vendor devices offer an increasing number of services and end-user applications that base their value on the ability to exploit the information originating from the surrounding environment by means of an increasing number of embedded sensors, e.g. GPS, compass, RFID readers, cameras and so on. However, usually such devices are not able to exchange information because of the lack of a shared data storage and common information exchange methods. A large number of standards and domain specific building blocks are available and are heavily used in today's products. However, the use of these solutions based on ready-to-use modules is not without problems. The integration and cooperation of different kinds of modules can be daunting because of growing complexity and dependency. In this scenarios it might be interesting to have an infrastructure that makes the coexistence of multi-vendor devices easy, while enabling low cost development and smooth access to services. This sort of technologies glue should reduce both software and hardware integration costs by removing the trouble of interoperability. The result should also lead to faster and simplified design, development and, deployment of cross-domain applications. This thesis is mainly focused on SW architectures supporting context aware service providers especially on the following subjects: - user preferences service adaptation - context management - content management - information interoperability - multivendor device interoperability - communication and connectivity interoperability Experimental activities were carried out in several domains including Cultural Heritage, indoor and personal smart spaces – all of which are considered significant test-beds in Context Aware Computing. The work evolved within european and national projects: on the europen side, I carried out my research activity within EPOCH, the FP6 Network of Excellence on “Processing Open Cultural Heritage” and within SOFIA, a project of the ARTEMIS JU on embedded systems. I worked in cooperation with several international establishments, including the University of Kent, VTT (the Technical Reserarch Center of Finland) and Eurotech. On the national side I contributed to a one-to-one research contract between ARCES and Telecom Italia. The first part of the thesis is focused on problem statement and related work and addresses interoperability issues and related architecture components. The second part is focused on specific architectures and frameworks: - MobiComp: a context management framework that I used in cultural heritage applications - CAB: a context, preference and profile based application broker which I designed within EPOCH Network of Excellence - M3: "Semantic Web based" information sharing infrastructure for smart spaces designed by Nokia within the European project SOFIA - NoTa: a service and transport independent connectivity framework - OSGi: the well known Java based service support framework The final section is dedicated to the middleware, the tools and, the SW agents developed during my Doctorate time to support context-aware services in smart environments.
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
This thesis investigates context-aware wireless networks, capable to adapt their behavior to the context and the application, thanks to the ability of combining communication, sensing and localization. Problems of signals demodulation, parameters estimation and localization are addressed exploiting analytical methods, simulations and experimentation, for the derivation of the fundamental limits, the performance characterization of the proposed schemes and the experimental validation. Ultrawide-bandwidth (UWB) signals are in certain cases considered and non-coherent receivers, allowing the exploitation of the multipath channel diversity without adopting complex architectures, investigated. Closed-form expressions for the achievable bit error probability of novel proposed architectures are derived. The problem of time delay estimation (TDE), enabling network localization thanks to ranging measurement, is addressed from a theoretical point of view. New fundamental bounds on TDE are derived in the case the received signal is partially known or unknown at receiver side, as often occurs due to propagation or due to the adoption of low-complexity estimators. Practical estimators, such as energy-based estimators, are revised and their performance compared with the new bounds. The localization issue is addressed with experimentation for the characterization of cooperative networks. Practical algorithms able to improve the accuracy in non-line-of-sight (NLOS) channel conditions are evaluated on measured data. With the purpose of enhancing the localization coverage in NLOS conditions, non-regenerative relaying techniques for localization are introduced and ad hoc position estimators are devised. An example of context-aware network is given with the study of the UWB-RFID system for detecting and locating semi-passive tags. In particular a deep investigation involving low-complexity receivers capable to deal with problems of multi-tag interference, synchronization mismatches and clock drift is presented. Finally, theoretical bounds on the localization accuracy of this and others passive localization networks (e.g., radar) are derived, also accounting for different configurations such as in monostatic and multistatic networks.
Resumo:
Context-aware computing is currently considered the most promising approach to overcome information overload and to speed up access to relevant information and services. Context-awareness may be derived from many sources, including user profile and preferences, network information, sensor analysis; usually context-awareness relies on the ability of computing devices to interact with the physical world, i.e. with the natural and artificial objects hosted within the "environment”. Ideally, context-aware applications should not be intrusive and should be able to react according to user’s context, with minimum user effort. Context is an application dependent multidimensional space and the location is an important part of it since the very beginning. Location can be used to guide applications, in providing information or functions that are most appropriate for a specific position. Hence location systems play a crucial role. There are several technologies and systems for computing location to a vary degree of accuracy and tailored for specific space model, i.e. indoors or outdoors, structured spaces or unstructured spaces. The research challenge faced by this thesis is related to pedestrian positioning in heterogeneous environments. Particularly, the focus will be on pedestrian identification, localization, orientation and activity recognition. This research was mainly carried out within the “mobile and ambient systems” workgroup of EPOCH, a 6FP NoE on the application of ICT to Cultural Heritage. Therefore applications in Cultural Heritage sites were the main target of the context-aware services discussed. Cultural Heritage sites are considered significant test-beds in Context-aware computing for many reasons. For example building a smart environment in museums or in protected sites is a challenging task, because localization and tracking are usually based on technologies that are difficult to hide or harmonize within the environment. Therefore it is expected that the experience made with this research may be useful also in domains other than Cultural Heritage. This work presents three different approaches to the pedestrian identification, positioning and tracking: Pedestrian navigation by means of a wearable inertial sensing platform assisted by the vision based tracking system for initial settings an real-time calibration; Pedestrian navigation by means of a wearable inertial sensing platform augmented with GPS measurements; Pedestrian identification and tracking, combining the vision based tracking system with WiFi localization. The proposed localization systems have been mainly used to enhance Cultural Heritage applications in providing information and services depending on the user’s actual context, in particular depending on the user’s location.
Resumo:
Self-assembly relies on the association of pre-programmed building blocks through non-covalent interactions to give complex supramolecular architectures. Previous studies provided evidence for the unique self-assembly properties of semi-synthetic lipophilic guanosine derivatives which can sequestrate ions from an aqueous phase, carry them into an organic phase where they promote the generation of well-defined supramolecular assemblies. In the presence of cations lipophilic guanosines form columnar aggregates while in their absence they generate supramolecular ribbons. The aim of this thesis has been the synthesis of guanine derivatives, in particular N9-alkylated guanines and a guanosine functionalized as a perchlorotriphenylmetil moiety (Gace-a-HPTM) in order to observe their supramolecular behaviour in the absence of sugar (ribose or deoxyribose) and in the presence of a bulky and chiral substituent respectively. By using guanine instead of guanosine, while maintaining all the hydrogen bond acceptor and donor groups required for supramolecular aggregation, the steric hindrance to supramolecular aggregation is notably reduced because (i.e. guanines with groups in N9 different from sugar are expected to have a greatest conformational freedom even in presence of bulky groups in C8). Supramolecular self-assembly of these derivatives has been accomplished in solutions by NMR and CD spectroscopy and on surface by STM technique. In analogy with other guanosine derivatives, also N9-substituted guanines and GAceHPTM form either ribbon-like aggregates or cation-templated G-quartet based columnar structures.
Resumo:
Advances in wireless networking and content delivery systems are enabling new challenging provisioning scenarios where a growing number of users access multimedia services, e.g., audio/video streaming, while moving among different points of attachment to the Internet, possibly with different connectivity technologies, e.g., Wi-Fi, Bluetooth, and cellular 3G. That calls for novel middlewares capable of dynamically personalizing service provisioning to the characteristics of client environments, in particular to discontinuities in wireless resource availability due to handoffs. This dissertation proposes a novel middleware solution, called MUM, that performs effective and context-aware handoff management to transparently avoid service interruptions during both horizontal and vertical handoffs. To achieve the goal, MUM exploits the full visibility of wireless connections available in client localities and their handoff implementations (handoff awareness), of service quality requirements and handoff-related quality degradations (QoS awareness), and of network topology and resources available in current/future localities (location awareness). The design and implementation of the all main MUM components along with extensive on the field trials of the realized middleware architecture confirmed the validity of the proposed full context-aware handoff management approach. In particular, the reported experimental results demonstrate that MUM can effectively maintain service continuity for a wide range of different multimedia services by exploiting handoff prediction mechanisms, adaptive buffering and pre-fetching techniques, and proactive re-addressing/re-binding.
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
This thesis aims at investigating methods and software architectures for discovering what are the typical and frequently occurring structures used for organizing knowledge in the Web. We identify these structures as Knowledge Patterns (KPs). KP discovery needs to address two main research problems: the heterogeneity of sources, formats and semantics in the Web (i.e., the knowledge soup problem) and the difficulty to draw relevant boundary around data that allows to capture the meaningful knowledge with respect to a certain context (i.e., the knowledge boundary problem). Hence, we introduce two methods that provide different solutions to these two problems by tackling KP discovery from two different perspectives: (i) the transformation of KP-like artifacts to KPs formalized as OWL2 ontologies; (ii) the bottom-up extraction of KPs by analyzing how data are organized in Linked Data. The two methods address the knowledge soup and boundary problems in different ways. The first method provides a solution to the two aforementioned problems that is based on a purely syntactic transformation step of the original source to RDF followed by a refactoring step whose aim is to add semantics to RDF by select meaningful RDF triples. The second method allows to draw boundaries around RDF in Linked Data by analyzing type paths. A type path is a possible route through an RDF that takes into account the types associated to the nodes of a path. Then we present K~ore, a software architecture conceived to be the basis for developing KP discovery systems and designed according to two software architectural styles, i.e, the Component-based and REST. Finally we provide an example of reuse of KP based on Aemoo, an exploratory search tool which exploits KPs for performing entity summarization.
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.
Resumo:
La ricerca si pone come obbiettivo principale quello di individuare gli strumenti in grado di controllare la qualità di una progettazione specifica che risponde alle forti richieste della domanda turistica di un territorio. Parte dalle più semplici teorie che inquadrano una costante condizione dell’uomo, “il VIAGGIARE”. La ricerca si pone come primo interrogativo quello definire una “dimensione” in cui le persone viaggiano, dove il concetto fisico di spazio dedicato alla vita si è spostato come e quanto si sposta la gente. Esiste una sorta di macroluogo (destinazione) che comprende tutti gli spazi dove la gente arriva e da cui spesso riparte. Pensare all'architettura dell’ospitalità significa indagare e comprendere come la casa non è più il solo luogo dove la gente abita. La ricerca affonda le proprie tesi sull’importanza dei “luoghi” appartenenti ad un territorio e come essi debbano riappropriarsi, attraverso un percorso progettuale, della loro più stretta vocazione attrattiva. Così come si sviluppa un’architettura dello stare, si manifesta un’architettura dello spostarsi e tali architetture si confondono e si integrano ad un territorio che per sua natura è esso stesso attrattivo. L’origine terminologica di nomadismo è passaggio necessario per la comprensione di una nuova dimensione architettonica legata a concetti quali mobilità e abitare. Si indaga pertanto all’interno della letteratura “diasporica”, in cui compaiono le prime configurazioni legate alla provvisorietà e alle costruzioni “erranti”. In sintesi, dopo aver posizionato e classificato il fenomeno turistico come nuova forma dell’abitare, senza il quale non si potrebbe svolgere una completa programmazione territoriale in quanto fenomeno oramai imprescindibile, la ricerca procede con l’individuazione di un ambito inteso come strumento di indagine sulle relazioni tra le diverse categorie e “tipologie” turistiche. La Riviera Romagnola è sicuramente molto famosa per la sua ospitalità e per le imponenti infrastrutture turistiche ma a livello industriale non è meno famosa per il porto di Ravenna che costituisce un punto di riferimento logistico per lo scambio di merci e materie prime via mare, oltre che essere, in tutta la sua estensione, caso di eccellenza. La provincia di Ravenna mette insieme tutti i fattori che servono a soddisfare le Total Leisure Experience, cioè esperienze di totale appagamento durante la vacanza. Quello che emerge dalle considerazioni svolte sul territorio ravennate è che il turista moderno non va più in cerca di una vacanza monotematica, in cui stare solo in spiaggia o occuparsi esclusivamente di monumenti e cultura. La richiesta è quella di un piacere procurato da una molteplicità di elementi. Pensiamo ad un distretto turistico dove l’offerta, oltre alla spiaggia o gli itinerari culturali, è anche occasione per fare sport o fitness, per rilassarsi in luoghi sereni, per gustare o acquistare cibi tipici e, allo stesso tempo, godere degli stessi servizi che una persona può avere a disposizione nella propria casa. Il percorso, finalizzato a definire un metodo di progettazione dell’ospitalità, parte dalla acquisizione delle esperienze nazionali ed internazionali avvenute negli ultimi dieci anni. La suddetta fase di ricerca “tipologica” si è conclusa in una valutazione critica che mette in evidenza punti di forza e punti di debolezza delle esperienze prese in esame. La conclusione di questa esplorazione ha prodotto una prima stesura degli “obbiettivi concettuali” legati alla elaborazione di un modello architettonico. Il progetto di ricerca in oggetto converge sul percorso tracciato dai Fiumi Uniti in Ravenna. Tale scelta consente di prendere in considerazione un parametro che mostri fattori di continuità tra costa e città, tra turismo balneare e turismo culturale, considerato quindi come potenziale strumento di connessione tra realtà spesso omologhe o complementari, in vista di una implementazione turistica che il progetto di ricerca ha come primo tra i suoi obiettivi. Il tema dell’architettura dell’ospitalità, che in questo caso si concretizza nell’idea di sperimentare l’ALBERGO DIFFUSO, è quello che permette di evidenziare al meglio la forma specifica della cultura locale, salvandone la vocazione universale. La proposta progettuale si articola in uno studio consequenziale ed organico in grado di promuovere una riflessione originale sul tema del modulo “abitativo” nei luoghi di prossimità delle emergenze territoriali di specifico interesse, attorno alle quali la crescente affluenza di un’utenza fortemente differenziata evidenzia la necessità di nodi singolari che si prestino a soddisfare una molteplicità di usi in contesti di grande pregio.
Resumo:
The full exploitation of multi-hop multi-path connectivity opportunities offered by heterogeneous wireless interfaces could enable innovative Always Best Served (ABS) deployment scenarios where mobile clients dynamically self-organize to offer/exploit Internet connectivity at best. Only novel middleware solutions based on heterogeneous context information can seamlessly enable this scenario: middleware solutions should i) provide a translucent access to low-level components, to achieve both fully aware and simplified pre-configured interactions, ii) permit to fully exploit communication interface capabilities, i.e., not only getting but also providing connectivity in a peer-to-peer fashion, thus relieving final users and application developers from the burden of directly managing wireless interface heterogeneity, and iii) consider user mobility as crucial context information evaluating at provision time the suitability of available Internet points of access differently when the mobile client is still or in motion. The novelty of this research work resides in three primary points. First of all, it proposes a novel model and taxonomy providing a common vocabulary to easily describe and position solutions in the area of context-aware autonomic management of preferred network opportunities. Secondly, it presents PoSIM, a context-aware middleware for the synergic exploitation and control of heterogeneous positioning systems that facilitates the development and portability of location-based services. PoSIM is translucent, i.e., it can provide application developers with differentiated visibility of data characteristics and control possibilities of available positioning solutions, thus dynamically adapting to application-specific deployment requirements and enabling cross-layer management decisions. Finally, it provides the MMHC solution for the self-organization of multi-hop multi-path heterogeneous connectivity. MMHC considers a limited set of practical indicators on node mobility and wireless network characteristics for a coarsegrained estimation of expected reliability/quality of multi-hop paths available at runtime. In particular, MMHC manages the durability/throughput-aware formation and selection of different multi-hop paths simultaneously. Furthermore, MMHC provides a novel solution based on adaptive buffers, proactively managed based on handover prediction, to support continuous services, especially by pre-fetching multimedia contents to avoid streaming interruptions.
Resumo:
This Doctoral Thesis focuses on the study of individual behaviours as a result of organizational affiliation. The objective is to assess the Entrepreneurial Orientation of individuals proving the existence of a set of antecedents to that measure returning a structural model of its micro-foundation. Relying on the developed measurement model, I address the issue whether some Entrepreneurs experience different behaviours as a result of their academic affiliation, comparing a sample of ‘Academic Entrepreneurs’ to a control sample of ‘Private Entrepreneurs’ affiliated to a matched sample of Academic Spin-offs and Private Start-ups. Building on the Theory of the Planned Behaviour, proposed by Ajzen (1991), I present a model of causal antecedents of Entrepreneurial Orientation on constructs extensively used and validated, both from a theoretical and empirical perspective, in sociological and psychological studies. I focus my investigation on five major domains: (a) Situationally Specific Motivation, (b) Personal Traits and Characteristics, (c) Individual Skills, (d) Perception of the Business Environment and (e) Entrepreneurial Orientation Related Dimensions. I rely on a sample of 200 Entrepreneurs, affiliated to a matched sample of 72 Academic Spin-offs and Private Start-ups. Firms are matched by Industry, Year of Establishment and Localization and they are all located in the Emilia Romagna region, in northern Italy. I’ve gathered data by face to face interviews and used a Structural Equation Modeling technique (Lisrel 8.80, Joreskog, K., & Sorbom, D. 2006) to perform the empirical analysis. The results show that Entrepreneurial Orientation is a multi-dimensional micro-founded construct which can be better represented by a Second-Order Model. The t-tests on the latent means reveal that the Academic Entrepreneurs differ in terms of: Risk taking, Passion, Procedural and Organizational Skills, Perception of the Government, Context and University Supports. The Structural models also reveal that the main differences between the two groups lay in the predicting power of Technical Skills, Perceived Context Support and Perceived University Support in explaining the Entrepreneurial Orientation Related Dimensions.
Resumo:
Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.
Resumo:
Technology advances in recent years have dramatically changed the way users exploit contents and services available on the Internet, by enforcing pervasive and mobile computing scenarios and enabling access to networked resources almost from everywhere, at anytime, and independently of the device in use. In addition, people increasingly require to customize their experience, by exploiting specific device capabilities and limitations, inherent features of the communication channel in use, and interaction paradigms that significantly differ from the traditional request/response one. So-called Ubiquitous Internet scenario calls for solutions that address many different challenges, such as device mobility, session management, content adaptation, context-awareness and the provisioning of multimodal interfaces. Moreover, new service opportunities demand simple and effective ways to integrate existing resources into new and value added applications, that can also undergo run-time modifications, according to ever-changing execution conditions. Despite service-oriented architectural models are gaining momentum to tame the increasing complexity of composing and orchestrating distributed and heterogeneous functionalities, existing solutions generally lack a unified approach and only provide support for specific Ubiquitous Internet aspects. Moreover, they usually target rather static scenarios and scarcely support the dynamic nature of pervasive access to Internet resources, that can make existing compositions soon become obsolete or inadequate, hence in need of reconfiguration. This thesis proposes a novel middleware approach to comprehensively deal with Ubiquitous Internet facets and assist in establishing innovative application scenarios. We claim that a truly viable ubiquity support infrastructure must neatly decouple distributed resources to integrate and push any kind of content-related logic outside its core layers, by keeping only management and coordination responsibilities. Furthermore, we promote an innovative, open, and dynamic resource composition model that allows to easily describe and enforce complex scenario requirements, and to suitably react to changes in the execution conditions.