10 resultados para glutamate dehydrogenase

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Ammonium (NH4+) release by bacterial remineralization and heterotrophic grazers determines the regenerated fraction of phytoplankton productivity, so the measurement of NH4+ excretion in marine organisms is necessary to characterize both the magnitude and the efficiency of the nitrogen cycle. Glutamate dehydrogenase (GDH) is largely responsible for NH4+ formation in crustaceans and consequently should be useful in estimating NH4+ excretion by marine zooplankton.
Here, we address body size and starvation as sources of variability on the GDH to NH4+ excretion ratio (GDH/RNH4+). We found a strong correlation between the RNH4+ and the GDH activity (r2 = 0.87, n = 41) during growth. Since GDH activity maintained a linear relation (b = 0.93) and RNH4+ scaled exponentially (b =0.55) in well fed mysids, the GDH/RNH4+ ratio increased with size. However, the magnitude of its variation increased even more when adult mysids were starved. In this case, the GDH/RNH4+ ratio ranged from 11.23 to 102.41.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Máster Universitario en Oceanografía

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Ammonium (NH4+) and nitrate (NO3-) are the main constituents of the inorganic nitrogen pool that supports primary production in marine systems. NH4+ release via glutamate deamination in heterotrophic organisms represents the largest recycled nitrogen source in the euphotic zone, supporting around the 80 % of the primary producers requirements (Harrison, 1992). Glutamate dehydrogenase (GDH) is the enzyme that catalyzes this process. This fact has lead to the use of GDH activity as an index, a proxy, for physiological NH4+ formation. The result is a measure of potential excretion that avoids incubation artefacts due to manipulation of the organisms. The relationship between GDH activity and NH4+ excretion in cultures of the marine mysid Leptomysis lingvura is analyzed here. With interspecific and environmental interferences minimized, the study shows that the relationship between GDH activity and NH4+ excretion in L. lingvura is similar to equivalent results measured on mixed assemblages of zooplankton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Ammonium (NH4+) release by bacterial remineralization and heterotrophic grazers determines the regenerated fraction of phytoplankton productivity, so the measurement of NH4+ excretion in marine organisms is necessary to characterize both the magnitude and the efficiency of the nitrogen cycle. Glutamate dehydrogenase (GDH) is largely responsible for NH4+ formation in crustaceans and consequently should be useful in estimating NH4+ excretion by marine zooplankton.
Here, we address body size and starvation as sources of variability on the GDH to NH4+ excretion ratio (GDH/RNH4+). We found a strong correlation between the RNH4+ and the GDH activity (r2 = 0.87, n = 41) during growth. Since GDH activity maintained a linear relation (b = 0.93) and RNH4+ scaled exponentially (b =0.55) in well fed mysids, the GDH/RNH4+ ratio increased with size. However, the magnitude of its variation increased even more when adult mysids were starved. In this case, the GDH/RNH4+ ratio ranged from 11.23 to 102.41.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Nitrogen (N) is essential for life, but its availability is frequently limited in ocean ecosystems. Among all the compounds which influence the N pool, ammonium (NH4+) represents the major source of N for autotrophs. This NH4+ is provided by bacterial remineralization and heterotrophic grazers, with the mesozooplankton responsible for 12% to 33% of the total NH4+ recycled.  Quantifying the excretion physiology of zooplankton is then, necessary to understand the basis of an aquatic ecosystem’s productivity.
The measurement of glutamate dehydrogenase (GDH) activity has been widely used to assess the NH4+ excretion rates in planktonic communities. However, its relationship with the physiology varies with temperature and the nutritional status of the organisms, among other variables. Here we compare the GDH/RNH4+ ratio between oceanic regions with different trophic conditions.  Strengthening our knowledge of the relationship between GDH activities and the NH4+ excretion rates will lead to more meaningful interpretations of the mesoscale variations in planktonic NH4+ excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]Nitrogen (N) is essential for life, but its availability is frequently limited in ocean ecosystems. Among all the compounds which influence the N pool, ammonium (NH4+) represents the major source of N for autotrophs. This NH4+ is provided by bacterial remineralization and heterotrophic grazers, with the mesozooplankton responsible for 12% to 33% of the total NH4+ recycled. Quantifying the excretion physiology of zooplankton is then, necessary to understand the basis of an aquatic ecosystem?s productivity. The measurement of glutamate dehydrogenase (GDH) activity has been widely used to assess the NH4+ excretion rates in planktonic communities. However, its relationship with the physiology varies with temperature and the nutritional status of the organisms, among other variables. Here we compare the GDH/RNH4+ ratio between oceanic regions with different trophic conditions. Strengthening our knowledge of the relationship between GDH activities and the NH4+ excretion rates will lead to more meaningful interpretations of the mesoscale variations in planktonic NH4+ excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Zooplankton metabolism in terms of oxygen consumption and ñutrient reléase (ammonia, phosphate) were measiu'ed in the Baltic Sea, a températe área with high envirormiental changes both in space and in time. Plankton of the surface layer were analysed with balance measurements in 4 size classes between 50 and 1000 nm during spring in 1988, 1990 and 1991, in summer 19^8 and 1990 as well. The use of electrón transport system (ETS), and the Glutamate Dehydrogenase (GDH) activity as indicators for respiration and ammonia reléase respectively, enlarged the data density and made a three dimensional resolution available (May 1990, 1991). Data are in the range of the latitudinal dependend magnitude. They reflect slight interannual, more seasonal and regional aspects. Animáis size, temperature, food concentration, and species composition influence the specific rates

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Today, science is difficult to pursue because funding is so tenuous. In such a financial climate, researchers need to consider parallel alternatives to ensure that scientific research can continue. Based on this thinking, we created BIOCEANSolutions, a company born of a research group. A great variety of environmental regulations and standards have emerged over recent years with the purpose of protecting natural ecosystems. These have enabled us to link our research to the market of environmental management. Marine activities can alter environmental conditions, resulting in changes in physiological states, species diversity, abundance, and biomass in the local biological communities. In this way, we can apply our knowledge, to plankton ecophysiology and biochemical oceanography. We measure enzyme activities as bio-indicators of energy metabolism and other physiological rates and biologic-oceanographic processes in marine organisms. This information provides insight into the health of marine communities, the stress levels of individual organisms, and potential anomalies that may be affecting them. In the process of verifying standards and complying with regulations, we can apply our analytic capability and knowledge. The main analyses that we offer are: (1) the activity of the electron transport system (ETS) or potential respiration (Φ), (2) the physiological measurement of respiration (oxygen consumption), (3) the activity of Isocitrate dehydrogenase (IDH), (4) the respiratory CO2 production, and (5) the activity of Glutamate dehydrogenase (GDH) and (6) the physiological measurement of ammonium excretion. In addition, our experience in a productive research group allows us to pursue and develop technical-experimental activities such as marine and freshwater aquaculture, oceanographic field sampling, as well as providing guidance, counseling, and academic services. In summary, this new company will permit us to create a symbiosis between public and private sectors that serve clients and will allow us to grow and expand as a research team.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]Starvation at all scales of plankton from archaea to medusae is the prevailing condition in marine ecosystems. Such nutrient-limitation will shift the physiological state in these organisms with accompanying changes in their physiology and biochemistry. Here, we review our laboratory’s progress in documenting these changes associated with starvation in a range of marine organisms. Specifically, we focused on respiration, ammonium excretion, CO2 production, RQ, respiratory ETS activity, isocitrate dehydrogenase and glutamate dehydrogenase activity in the mysid, Leptomysis lingvura, a dinoflagellate, Oxyrrhis marina and two bacteria, Vibrio natriegens, and Pseudomonas nautica