11 resultados para Subfractals, Subfractal Coding, Model Analysis, Digital Imaging, Pattern Recognition

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Different researches suggest that inner facial features are not the only discriminative features for tasks such as person identification or gender classification. Indeed, they have shown an influence of features which are part of the local face context, such as hair, on these tasks. However, object-centered approaches which ignore local context dominate the research in computational vision based facial analysis. In this paper, we performed an analysis to study which areas and which resolutions are diagnostic for the gender classification problem. We first demonstrate the importance of contextual features in human observers for gender classification using a psychophysical ”bubbles” technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Social robots are receiving much interest in the robotics community. The most important goal for such robots lies in their interaction capabilities. An attention system is crucial, both as a filter to center the robot’s perceptual resources and as a mean of letting the observer know that the robot has intentionality. In this paper a simple but flexible and functional attentional model is described. The model, which has been implemented in an interactive robot currently under development, fuses both visual and auditive information extracted from the robot’s environment, and can incorporate knowledge-based influences on attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The work presented in this paper is related to Depth Recovery from Focus The approach starts calibrating focal length of the camera using the Gaussian lens law for the thin lens camera model Two approaches are presented based on the availability of the internal distance of the lens

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This paper presents a study on the facial feature detection performance achieved using the Viola-Jones framework. A set of classi- ers using two di erent focuses to gather the training samples is created and tested on four di erent datasets covering a wide range of possibili- ties. The results achieved should serve researchers to choose the classi er that better ts their demands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. The face detection problem, as suggeted by recent face detection challenges, is still not solved. Face detectors traditionally fail in large-scale problems and/or when the face is occluded or di erent head rotations are present. The combination of face and facial feature detectors is evaluated with a public database. The obtained results evidence an improvement in the positive detection rate while reducing the false detection rate. Additionally, we prove that the integration of facial feature detectors provides useful information for pose estimation and face alignment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future