5 resultados para SVM (Support Vector Machine)
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future
Resumo:
[EN]We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two di erent face representation approaches: Principal Components Analysis (PCA) and Gabor lters. The results achieved using a Support Vector Machine (SVM) based classi er are promising and particularly better for the second representation approach.
Resumo:
Permitida la difusión del código bajo los términos de la licencia BSD de tres cláusulas.
Resumo:
[EN]This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) combined with self similarity (LAC) as main descriptors of the image, along with the powerful Support Vector Machines classifier. Results show that error rates can be acceptable and the self similarity approach for the detection of smiles is suitable for real-time interaction, although there is still room for improvement.