10 resultados para Multimodal Biometrics
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[ES] La responsabilidad es en el transporte multimodal la cuestión más delicada y discutida por doctrina y jurisprudencia. La importancia de esta materia justifica un análisis jurídico detallado de la misma.
Resumo:
[EN]During the last decade, researchers have verified that clothing can provide information for gender recognition. However, before extracting features, it is necessary to segment the clothing region. We introduce a new clothes segmentation method based on the application of the GrabCut technique over a trixel mesh, obtaining very promising results for a close to real time system. Finally, the clothing features are combined with facial and head context information to outperform previous results in gender recognition with a public database.
Resumo:
[EN]Social robots are receiving much interest in the robotics community. The most important goal for such robots lies in their interaction capabilities. An attention system is crucial, both as a filter to center the robot’s perceptual resources and as a mean of letting the observer know that the robot has intentionality. In this paper a simple but flexible and functional attentional model is described. The model, which has been implemented in an interactive robot currently under development, fuses both visual and auditive information extracted from the robot’s environment, and can incorporate knowledge-based influences on attention.
Resumo:
[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.
Resumo:
[EN]Spoofing identities using photographs is one of the most common techniques to attack 2-D face recognition systems. There seems to exist no comparative stud- ies of di erent techniques using the same protocols and data. The motivation behind this competition is to com- pare the performance of di erent state-of-the-art algo- rithms on the same database using a unique evaluation method. Six di erent teams from universities around the world have participated in the contest.
Resumo:
[EN] This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.
Resumo:
In this paper, we present the Kinship Verification in the Wild Competition: the first kinship verification competition which is held in conjunction with the International Joint Conference on Biometrics 2014, Clearwater, Florida, USA. The key goal of this competition is to compare the performance of different methods on a new-collected dataset with the same evaluation protocol and develop the first standardized benchmark for kinship verification in the wild.
Resumo:
[EN]Gender information may serve to automatically modulate interaction to the user needs, among other applications. Within the Computer Vision community, gender classification (GC) has mainly been accomplished with the facial pattern. Periocular biometrics has recently attracted researchers attention with successful results in the context of identity recognition. But, there is a lack of experimental evaluation of the periocular pattern for GC in the wild. The aim of this paper is to study the performance of this specific facial area in the currently most challenging large dataset for the problem.
Resumo:
[EN]This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) combined with self similarity (LAC) as main descriptors of the image, along with the powerful Support Vector Machines classifier. Results show that error rates can be acceptable and the self similarity approach for the detection of smiles is suitable for real-time interaction, although there is still room for improvement.
Resumo:
[EN]This paper does not propose a new technique for face representationorclassification. Insteadtheworkdescribed here investigates the evolution of an automatic system which, based on a currently common framework, and starting from an empty memory, modifies its classifiers according to experience. In the experiments we reproduce up to a certain extent the process of successive meetings. The results achieved, even when the number of different individuals is still reduced compared to off-line classifiers, are promising.