15 resultados para Math Applications in Computer Science
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.
Resumo:
[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.
Resumo:
[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.
Resumo:
Tesis en inglés. Eliminadas las páginas en blanco del pdf
Resumo:
[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.
Resumo:
[EN]In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. The face detection problem, as suggeted by recent face detection challenges, is still not solved. Face detectors traditionally fail in large-scale problems and/or when the face is occluded or di erent head rotations are present. The combination of face and facial feature detectors is evaluated with a public database. The obtained results evidence an improvement in the positive detection rate while reducing the false detection rate. Additionally, we prove that the integration of facial feature detectors provides useful information for pose estimation and face alignment.
Resumo:
[EN]Re-identi fication is commonly accomplished using appearance features based on salient points and color information. In this paper, we make an study on the use of di fferent features exclusively obtained from depth images captured with RGB-D cameras. The results achieved, using simple geometric features extracted in a top-view setup, seem to provide useful descriptors for the re-identi fication task.
Resumo:
[EN]This paper focuses on four different initialization methods for determining the initial shape for the AAM algorithm and their particular performance in two different classification tasks with respect to either the facial expression DaFEx database and to the real world data obtained from a robot’s point of view.
Resumo:
[EN]Different researches suggest that inner facial features are not the only discriminative features for tasks such as person identification or gender classification. Indeed, they have shown an influence of features which are part of the local face context, such as hair, on these tasks. However, object-centered approaches which ignore local context dominate the research in computational vision based facial analysis. In this paper, we performed an analysis to study which areas and which resolutions are diagnostic for the gender classification problem. We first demonstrate the importance of contextual features in human observers for gender classification using a psychophysical ”bubbles” technique.
Resumo:
[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.
Resumo:
[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.
Resumo:
[EN]This paper describes an approach for detection of frontal faces in real time (20-35Hz) for further processing. This approach makes use of a combination of previous detection tracking and color for selecting interest areas. On those areas, later facial features such as eyes, nose and mouth are searched based on geometric tests, appearance veri cation, temporal and spatial coherence. The system makes use of very simple techniques applied in a cascade approach, combined and coordinated with temporal information for improving performance. This module is a component of a complete system designed for detection, tracking and identi cation of individuals [1].
Resumo:
[EN]Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.