3 resultados para BOUND-CONSTRAINED MINIMIZATION
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including
Resumo:
[EN]A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.
Resumo:
[EN]Approximate inverses, based on Frobenius norm minimization, of real nonsingular matrices are analyzed from a purely theoretical point of view. In this context, this paper provides several sufficient conditions, that assure us the possibility of improving (in the sense of the Frobenius norm) some given approximate inverses. Moreover, the optimal approximate inverses of matrix A ∈ R n×n , among all matrices belonging to certain subspaces of R n×n , are obtained. Particularly, a natural generalization of the classical normal equations of the system Ax = b is given, when searching for approximate inverses N 6= AT such that AN is symmetric and kAN − IkF < AAT − I F …