15 resultados para Atlantic Ocean (Central)
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
Programa de doctorado en Oceanografía. Trabajo presentado para la obtención del Diploma de Estudios Avanzados.
Resumo:
Programa de doctorado, Oceanografía ; 2004-2006
Resumo:
Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20–30 N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, 10 and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddy-field generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; farfield) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 70% in THAA in the eddy-field relative to FF stations. 15 Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected “fresher” material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of 20 diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of 15 mmolCm−2 d−1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at 25 near-coastal stations relative to open ocean stations.
Resumo:
[EN] Diel Vertical Migrants (DVMs) are mainly zooplankton and micronekton which migrate upward from 400-500 m depth every night to feed on the productive epipelagic zone, coming back at dawn to the mesopelagic zone, where they defecate, excrete, and respire the ingested carbon. DVMs should contribute to the biological pump in the ocean and, accordingly, to the global CO2 balance. Although those migrants are mainly small fishes, cephalopods and crustaceans, the lanternfishes (myctophidae) usually contribute up to 80% of total DVMs biomass. Thus, myctophids may represent a pathway accounting for a substantial export of organic carbon to the deep ocean. However, the magnitude of this transport is still poorly known. In order to assess this active flux of carbon, we performed a preliminary study of mesopelagic organisms around the Canary Islands. Here we present the results of diet, daily rations and feeding chronology of Lobianchia dofleini, Hygophum hygomii and Ceratoscopelus maderensis, 3 dominant species of myctophids performing diel vertical migrations in the Subtropical Eastern North Atlantic Ocean. Samples were obtained on board the RV La Bocaina during June 2009. Myctophids were sorted and fixed in 4% buffered formalin and the stomach contents of target species were examined and weighted. Feeding chronology was approached by studying stomach fullness and state of digestion of prey items in individuals from hauls performed at different times and depths. Our results provide further information about lanternfishes feeding ecology in relation to their vertical migration patterns as well as their contribution to the biological carbon pump.
Resumo:
[EN] Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20?30_ N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddyfield generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; far-field) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 2 times in THAA in the eddy-field relative to FF stations. Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected ?fresher? material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of _15 mmolCm?2 d?1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at near-coastal stations relative to open ocean stations.
Resumo:
[EN] The reproductive phenology of three species of Gelidiales, Gelidium canariense, Gelidium arbuscula and Pterocladiella capillacea, was analysed seasonally for a period of one year in two localities on the West coast of Tenerife Atlantic Ocean, Canary Islands, Spain. Considerations are provided on sex ratio, maximum length and branch order of uprights and on the length of the thalli for each sexual and asexual phase of the Canary Islands populations. The three species were characterized by a high percentage of tetrasporophytes, while female and male gametophytes have been observed only in little proportion. Only G. canariense showed gametophytes in all seasons while the occurrence of gametophytes in G. arbuscula and Pterocladiella capillacea demonstrated a clear seasonality.
Resumo:
Degree in Marine Sciences. Faculty of Marine Sciences, University of Las Palmas de Gran Canaria. Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas
Resumo:
[EN]Here we provide evidence, based on prokaryote metabolic proxies and direct estimates of oxygen consumption, that the mesopelagic prokaryote assemblage in the subtropical Northeast Atlantic is an active one. It supports a high respiration (0.22 ± 0.05 μmol O2 l−1 d−1, corresponding to 68 ± 8 mmol CO2 m−2 d−1), comparable to that of the epipelagic zone during the same period (64–97 mmol C m−2 d−1). Our findings suggest that mesopelagic prokaryotes in the NE subtropical Ocean, as well as in other eastern boundary regions, are important carbon sinks for organic matter advected from the highly productive coastal systems, and would play a key role in the global carbon cycle of the oceans.
Resumo:
[EN]The capacity of the ocean to sequester atmospheric carbon (CO2) depends to a large extent on the dynamics of biogenic carbon in the water column. However, most current global and regional estimates of carbon balances are solely based on particles collected with drifting and moored sediment traps. As a consequence, construction of ocean carbon budgets has long been guided by the simplification introduced by sediment traps, which give a 1D vision of the whole picture. In this thesis we have assessed a quantitative analysis of the flux magnitude and the mechanisms of transport of the whole particle spectrum (suspended, slowly-sinking and sinking particles).
Resumo:
[EN]Coastal upwelling in the eastern margin and offshore curl-driven upwelling in the southeastern margin, make the subtropical Northeast Atlantic a region of major primary productivity. When examining a broad zonal area, from the coast to 40_W, we find that the upward transport of nutrients due to offshore curl-driven upwelling becomes the main control on productivity. Nevertheless, despite its relatively small zonal extension of about 100 km, coastal upwelling extends its impact towards the open ocean through offshore Ekman transport and convergence of the meridional flow at Cape Blanc (21_N).