23 resultados para [INFO] Computer Science [cs]
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.
Resumo:
[ES] El plagio en la educación superior es un problema importante que afecta a la calidad de la evaluación. El problema tiene implicaciones académicas, éticas y sociales por lo que es necesario conocer su alcance real para poder abordarlo de forma correcta. Las soluciones implican medidas coercitivas, preventivas y metodológicas. En este trabajo se presenta un estudio de la incidencia del plagio en ejercicios de programación de asignaturas pertenecientes a las titulaciones de informática de la Universidad de Las Palmas de Gran Canaria. El periodo de estudio abarca desde el curso 1999/2000 al curso 2009/2010. Los datos analizados corresponden a trece asignaturas de tres titulaciones. Los alumnos de estas asignaturas suman, en el periodo referido,alrededor de 2700. Junto con el análisis de los datos obtenidos, se aportan algunas reflexiones sobre el problema, fruto de la experiencia acumulada y del estudio de cómo se afronta el plagio en algunas de las universidades más relevantes del mundo.
Resumo:
[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.
Resumo:
[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction.We have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. In order to calibrate the camera we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. We describe two general techniques to extract a sequence of corresponding points from multiple views of an object. The resulting sequence of points will be used later to reconstruct a set of 3D points representing the object surfaces on the scene. We have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.
Resumo:
[EN] In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.
Resumo:
[EN] In this paper we present a method for the regularization of a set of unstructured 3D points obtained from a sequence of stereo images. This method takes into account the information supplied by the disparity maps computed between pairs of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the distance from 3D points to the projective lines of camera points, and a second term that allows for the regularization of the set of 3D points by preserving discontinuities presented on the disparity maps. We embed this energy in a 2D finite element method. After minimizing, this method results in a large system of equations that can be optimized for fast computations. We derive an efficient implicit numerical scheme which reduces the number of calculations and memory allocations.
Resumo:
[ES]
TouCAN es una librería creada en su primera versión (v1) como Trabajos de Fin de Grado en Ingeniería Informática por John Wu Wu y Jose Lareo Domínguez bajo la tutorización de los profesores Antonio C. Domínguez Brito y Jorge Cabrera Gámez. Define un protocolo de comunicación para la interconexión de una red de microcontroladores basados en la plataforma de prototipado electrónico Arduino. Trabaja sobre el protocolo de comunicación CAN Bus (Controller Area Network), ampliamente utilizado por la industria desde la década de los 80. TouCAN destaca por ser una librería ligera, potente y amigable. El objetivo principal de este Trabajo Final de Grado en Ingeniería Informática consiste en proporcionar robustez a la librería incorporando mejoras y nuevas funcionalidades. Entre las principales mejoras destacar el control frente a fallos de comunicación, reinicio o reset de los microcontroladores, así como la caída de los mismos. Otra característica incluida en esta revisión consiste en la asignación dinámica deidentificadores de dispositivos que conforman un sistema empotrado distribuido. Permitiendo la posibilidad de “conexión en caliente” de nuevos nodos microcontroladores a la red de forma dinámica. A estos cambios, también se han añadido mejoras en la interfaz de la API que simplifica el uso y aprendizaje de la misma. Así como una nueva herramienta denominada TouCANSniffer que permite capturar y analizar todo el tráfico generado en la red. Las nuevas características y funcionalidades añadidas en TouCAN v2 proporcionan el potencial necesario para ser considerada seriamente como base de cualquier nuevo proyecto que integre una red distribuida de microcontroladores.
Resumo:
[ES] El Trabajo de Fin de Grado, Monitor Web de Expresiones Regulares (MWRegEx), es una herramienta basada en tecnologías web, desarrollada usando el entorno Visual Studio. El objetivo principal de la aplicación es dar apoyo a la docencia de expresiones regulares, en el marco de la enseñanza del manejo de ristras de caracteres en las asignaturas de programación del Grado en Ingeniería Informática. La aplicación permite obtener el dibujo de un autómata de una expresión regular, facilitando su comprensión; además, permite aplicar la expresión a diferentes ristras de caracteres, mostrando las coincidencias encontradas, y ofrece una versión de la expresión adaptada a su uso en literales string de lenguajes como Java y otros. La herramienta se ha implementado en dos partes: un servicio web, escrito en C#, donde se realizan todos los análisis de las expresiones regulares y las ristras a contrastar; y un cliente web, implementado usando tecnología asp.net, con JavaScript y JQuery, que gestiona la interfaz de usuario y muestra los resultados. Esta separación permite que el servicio web pueda ser reutilizado con otras aplicaciones cliente. El autómata que representa una expresión regular esta dibujado usando la librería Raphaël JavaScript que permite manejar los elementos SVG. Cada elemento de la expresión regular tiene un dibujo diferente y único para así diferenciarlo. Toda la interfaz gráfica de usuario está internacionalizada de manera tal que pueda adaptarse a diferentes idiomas y regiones sin la necesidad de realizar cambios de ingeniería ni en el código. Tanto el servicio web como la parte cliente están estructurados para que se puedan agregar nuevas modificaciones sin que esto genere una onda expansiva a lo largo de las diversas clases existentes.
Resumo:
[EN]This paper presents a study on the facial feature detection performance achieved using the Viola-Jones framework. A set of classi- ers using two di erent focuses to gather the training samples is created and tested on four di erent datasets covering a wide range of possibili- ties. The results achieved should serve researchers to choose the classi er that better ts their demands.
Resumo:
[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.
Resumo:
[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.
Resumo:
[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.
Resumo:
[EN]In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. The face detection problem, as suggeted by recent face detection challenges, is still not solved. Face detectors traditionally fail in large-scale problems and/or when the face is occluded or di erent head rotations are present. The combination of face and facial feature detectors is evaluated with a public database. The obtained results evidence an improvement in the positive detection rate while reducing the false detection rate. Additionally, we prove that the integration of facial feature detectors provides useful information for pose estimation and face alignment.
Resumo:
[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.