3 resultados para relatividade

em Universidade Federal do Pará


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho determinamos, utilizando Teoria Quântica de Campos em nível de árvore, a radiação escalar emitida por uma fonte em movimento circular uniforme no espaço-tempo plano de Minkowski, assumindo Gravitação Newtoniana, e no espaço-tempo curvo de um buraco negro sem carga e com momento angular nulo, assumindo Relatividade Geral. Efetuamos este cálculo analiticamente para o caso de Minkowski e numericamente no âmbito do espaço-tempo de Schwarzschild, sendo que neste espaço-tempo curvo obtivemos a forma analítica e a normalização dos modos nas regiões assintóticas. Verificamos que, para as órbitas circulares estáveis de acordo com a Relatividade Geral, a potência irradiada no caso de um buraco negro de Schwarzschild é menor do que a obtida no espaço-tempo de Minkowski assumindo a Gravitação Newtoniana. Obtemos também que apenas uma pequena parcela da radiação emitida é absorvida pelo buraco negro. Verificamos que a diferença entre as potências irradiadas em Schwarzschild e Minkowski diminui na medida em que aumentamos o valor da massa do campo. Em Schwarzschild, uma parcela cada vez maior da radiação emitida é absorvida pelo buraco negro na medida em que aumentamos o valor da massa do campo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usando o formalismo relativístico no estudo da propagação de perturbações lineares em fluidos ideais, obtêm-se fortes analogias com os resultados encontrados na Teoria da Relatividade Geral. Neste contexto, de acordo com Unruh [W. Unruh, Phys. Rev. Letters 46, 1351 (1981)], é possível simular um espaço-tempo dotado de uma métrica efetiva em um fluído ideal barotrópico, irrotacional e perturbado por ondas acústicas. Esse espaço-tempo efetivo é chamado de espaço-tempo acústico e satisfaz as propriedades geométricas e cinemáticas de um espaço-tempo curvo. Neste trabalho estudamos os modos quasinormais (QNs) e os pólos de Regge (PRs) para um espaço-tempo acústico conhecido como buraco acústico canônico (BAC). No nosso estudo, usamos o método de expansão assintótica proposto por Dolan e Ottewill [S. R. Dolan e A. C. Ottewill, Class. Quantum Gravity 26, 225003 (2009)] para calcularmos, em termos arbitrários do número de overtone n, as frequências QNs e os momentos angulares para os PRs, bem como suas respectivas funções de onda. As frequências e as funções de onda dos modos QNs são expandidas em termos de potências inversas de L = l + 1/2 , onde l é o momento angular, enquanto que os momentos angulares e funções de onda dos PRs são expandidos em termos do inverso das frequências de oscilação do buraco acústico canônico. Comparamos os nossos resultados com os já existentes na literatura, que usam a aproximação de Wentzel-Kramers-Brillouin (WKB) como método de determinação dos modos QNs e dos PRs, e obtemos uma excelente concordância dentro do limite da aproximação eikonal (l ≥ 2 e l > n).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho investigamos soluções solitônicas em modelos de Kaluza-Klein com um número arbitrário de espaços internos toroidais, que descrevem o campo gravitacional de um objeto massivo compacto. Cada toro di-dimensional possui um fator de escala independente Ci, i = 1, ..., N, que é caracterizado pelo parâmetro ᵞi. Destacamos a solução fisicamente interessante correspondente à massa puntual. Para a solução geral obtemos equações de estado nos espaços externo e interno. Estas equações demonstram que a massa pontual solitônica possui equações de estado tipo poeira em todos os espaços. Obtemos também os parâmetros pósnewtonianos que nos possibilitam encontrar as fórmulas da precessão do periélio, do desvio da luz e do atraso no tempo de ecos de radar. Além disso, os experimentos gravitacionais levam a uma forte limitação nos parâmetros do modelo: T = ƩNi=1 diYi = −(2, 1±2, 3)×10−5. A solução para massa pontual com Y1 = . . . = YN = (1+ƩNi=1 di)−1 contradiz esta restrição. A imposição T = 0 satisfaz essa limitação experimental e define uma nova classe de soluções que são indistinguíveis para a relatividade geral. Chamamos estas soluções de sólitons latentes. Cordas negras e membranas negras com Yi = 0 pertencem a esta classe. Além disso, a condição de estabilidade dos espaços internos destaca cordas/membranas negras de sólitons latentes, conduzindo exclusivamente para as equações de estado de corda/membrana negra pi = −ε/2, i = 1, . . . ,N, nos espaços internos e ao número de dimensões externas d0 = 3. As investigações do fluido perfeito multidimensional estático e esfericamente simétrico com equação de estado tipo poeira no espaço externo confirmam os resultados acima.