7 resultados para Wiener-Hopf operator

em Universidade Federal do Pará


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação consta de estudos sobre deconvolução sísmica, onde buscamos otimizar desempenhos na operação de suavização, na resolução da estimativa da distribuição dos coeficientes de reflexão e na recuperação do pulso-fonte. Os filtros estudados são monocanais, e as formulações consideram o sismograma como o resultado de um processo estocástico estacionário, e onde demonstramos os efeitos de janelas e de descoloração. O principio aplicado é o da minimização da variância dos desvios entre o valor obtido e o desejado, resultando no sistema de equações normais Wiener-Hopf cuja solução é o vetor dos coeficientes do filtro para ser aplicado numa convolução. O filtro de deconvolução ao impulso é desenhado considerando a distribuição dos coeficientes de reflexão como uma série branca. O operador comprime bem os eventos sísmicos a impulsos, e o seu inverso é uma boa aproximação do pulso-fonte. O janelamento e a descoloração melhoram o resultado deste filtro. O filtro de deconvolução aos impulsos é desenhado utilizando a distribuição dos coeficientes de reflexão. As propriedades estatísticas da distribuição dos coeficientes de reflexão tem efeito no operador e em seu desempenho. Janela na autocorrelação degrada a saída, e a melhora é obtida quando ela é aplicada no operador deconvolucional. A transformada de Hilbert não segue o princípio dos mínimos-quadrados, e produz bons resultados na recuperação do pulso-fonte sob a premissa de fase-mínima. O inverso do pulso-fonte recuperado comprime bem os eventos sísmicos a impulsos. Quando o traço contém ruído aditivo, os resultados obtidos com auxilio da transformada de Hilbert são melhores do que os obtidos com o filtro de deconvolução ao impulso. O filtro de suavização suprime ruído presente no traço sísmico em função da magnitude do parâmetro de descoloração utilizado. A utilização dos traços suavizados melhora o desempenho da deconvolução ao impulso. A descoloração dupla gera melhores resultados do que a descoloração simples. O filtro casado é obtido através da maximização de uma função sinal/ruído. Os resultados obtidos na estimativa da distribuição dos coeficientes de reflexão com o filtro casado possuem melhor resolução do que o filtro de suavização.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo central deste trabalho é o estudo do desempenho do operador deconvolucional WHL na compressão do pulso-fonte sísmico, sob condições especiais de fase não-mínima e da densidade de eventos no traço, como casos advogados para dados reais e processamento em rotina. O método de ataque ao problema construído é centrado no conteúdo da informação da função autocorrelação submetida a diferentes condições: (a) de truncamento e tipo de janelas; (b) das características da fase do operador (se mínima ou não-mínima); (c) da medida de qualidade; (d) do nível de embranquecimento; (e) do ruído presente e da equalização; (f) do balanceamento do traço; (g) dos princípios físicos da propagação expressos e limitados pelo modelo convolutional. Os resultados obtidos são apenas na forma numérica, organizados na forma de álbuns com dificuldades crescentes, e demonstram como o uso de janelas na autocorrelação serve para diagnosticar e melhorar a performance dos operadores. Concluímos que muitas perguntas ainda surgem quando técnicas de deconvolução são aplicadas a seções sísmicas de bacias sedimentares, e que o modelo de Goupillaud é conveniente para simulações e análises devido a sua descrição matemática simples e completa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo central deste trabalho é o estudo e a aplicação do método Kalman-Bucy no processo de deconvolução ao impulso e de deconvolução com predição, onde é considerado que os dados observados são classificados como não-estacionários. Os dados utilizados neste trabalho são sintéticos e, com isto, esta Tese tem características de um exercício numérico e investigativo. O operador de deconvolução ao impulso é obtido a partir da teoria de CRUMP (1974) fazendo uso das soluções das equações Wiener-Hopf apresentadas por KALMAN-BUCY (1961) nas formas contínuas e discretas considerando o processo como não estacionário. O operador de predição (KBCP) está baseado nas teorias de CRUMP (1974) e MENDEL ET AL (1979). Sua estrutura assemelha-se ao filtro Wiener-Hopf onde os coeficientes do operador (WHLP) são obtidos através da autocorrelação, e no caso (KBCP) são obtidos a partir da função bi(k). o problema é definido em duas etapas: a primeira consta da geração do sinal, e a segunda da sua avaliação. A deconvolução realizada aqui é classificada como estatística, e é um modelo fortemente baseado nas propriedades do sinal registrado e de sua representação. Os métodos foram aplicados apenas em dados sintéticos de seção fonte-comum obtida a partir dos modelos com interfaces contínuas e camadas homogêneas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nas bacias sedimentares da região Amazônica, a geração e o acúmulo de hidrocarboneto estão relacionados com a presença das soleiras de diabásio. Estas rochas magmáticas intrusivas possuem grandes contrastes de impedância com as rochas sedimentares encaixantes, resultando em múltiplas externas e internas, com amplitudes semelhantes às das reflexões sísmicas primárias. Estas múltiplas podem predominar sobre as informações oriundas de interfaces mais profundas, dificultando o processamento, a interpretação e o imageamento da seção de sísmica. O objetivo da presente tese é realizar a atenuação de múltiplas em seções sintéticas fontecomum (CS), através da combinação dos métodos Wiener-Hopf-Levinson de predição (WHLP) e o do empilhamento superfície-de-reflexão-comum (CRS), aqui denominando pela sigla WHLPCRS. O operador de deconvolução é calculado com as amplitudes reais do sinal sísmico e traço-a-traço, o que consideramos como uma melhor eficiência para a operação de atenuação. A identificação das múltiplas é feita na seção de afastamento-nulo (AN) simulada com o empilhamento CRS, utilizando o critério da periodicidade entre primária e suas múltiplas. Os atributos da frente de onda, obtidos através do empilhamento CRS, são utilizados na definição de janelas móveis no domínio tempo-espaço, e usados para calcular o operador WHLP-CRS. No desenvolvimento do presente trabalho, visamos evitar a inconveniência da seção processada ZO; desenhar e aplicar operadores na configuração CS; e estender o método WHL para camadas curvas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A motivação geológica deste trabalho reside no imageamento de estruturas de bacias sedimentares da região Amazônica, onde a geração e o acúmulo de hidrocarboneto estão relacionados com a presença de soleiras de diabásio. A motivação sísmica reside no fato de que essas rochas intrusivas possuem grandes contrastes de impedância com a rocha encaixante, o que resulta em múltiplas, externas e internas, com amplitudes semelhantes as das primárias. O sinal sísmico das múltiplas podem predominar sobre o sinal das reflexões primárias oriundas de interfaces mais profundas, o que pode dificultar o processamento, a interpretação e o imageamento da seção sísmica temporal. Neste trabalho, estudamos a atenuação de múltiplas em seções sintéticas fonte-comum (FC) através da comparação de dois métodos. O primeiro método resulta da combinação das técnicas Wiener-Hopf-Levinson de predição (WHLP) e o de empilhamento superfície-de-reflexão-comum (CRS), e denominando WHLP-CRS, onde o operador é desenhado exclusivamente no domínio do tempo-espaço. O segundo método utilizado é o filtro de velocidade (ω-k) aplicado após o empilhamento superfície-de-reflexão (CRS), onde o operador é desenhado exclusivamente no domínio bidimensional de freqüência temporal-espacial. A identificação das múltiplas é feita na seção de afastamento-nulo (AN) simulada com o empilhamento CRS, e utiliza o critério da periodicidade entre primária e suas múltiplas. Os atributos da frente de onda, obtidos através do empilhamento CRS, são utilizados na definição de janelas móveis no domínio tempo-espaço, que são usadas para calcular o operador WHLP-CRS. O cálculo do filtroω-k é realizado no domínio da freqüência temporal-espacial, onde os eventos são selecionados para corte ou passagem. O filtro (ω-k) é classificado como filtro de corte, com alteração de amplitude, mas não de fase, e limites práticos são impostos pela amostragem tempo-espaço. Em termos práticos, concluímos que, para o caso de múltiplas, os eventos separados no domínio x-t não necessariamente se separam no domínio ω-k, o que dificulta o desenho de um operador ω-k semelhante em performance ao operador x-t.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho trata da aplicação do filtro Kalman-Bucy (FKB), organizado como uma deconvolução (FKBD), para extração da função refletividade a partir de dados sísmicos. Isto significa que o processo é descrito como estocástico não-estacionário, e corresponde a uma generalização da teoria de Wiener-Kolmogorov. A descrição matemática do FKB conserva a relação com a do filtro Wiener-Hopf (FWH) que trata da contra-parte com um processo estocástico estacionário. A estratégia de ataque ao problema é estruturada em partes: (a) Critério de otimização; (b) Conhecimento a priori; (c) Algoritmo; e (d) Qualidade. O conhecimento a priori inclui o modelo convolucional, e estabelece estatísticas para as suas componentes do modelo (pulso-fonte efetivo, função refletividade, ruídos geológico e local). Para demostrar a versatilidade, a aplicabilidade e limitações do método, elaboramos experimentos sistemáticos de deconvolução sob várias situações de nível de ruídos aditivos e de pulso-fonte efetivo. Demonstramos, em primeiro lugar, a necessidade de filtros equalizadores e, em segundo lugar, que o fator de coerência espectral é uma boa medida numérica da qualidade do processo. Justificamos também o presente estudo para a aplicação em dados reais, como exemplificado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apresentamos dois algoritmos automáticos, os quais se utilizam do método dos mínimos quadrados de Wiener-Hopf, para o cálculo de filtros lineares digitais para as transformadas seno, co-seno e de Hankel J0, J1 e J2. O primeiro, que otimiza os parâmetros: incremento das abscissas, abscissa inicial e o fator de deslocamento utilizados para os cálculos dos coeficientes dos filtros lineares digitais que são aferidos através de transformadas co-seno, seno e o segundo, que otimiza os parâmetros: incremento das abscissas e abscissa inicial utilizados para os cálculos dos coeficientes dos filtros lineares digitais que são aferidos através de transformadas de Hankel J0, J1 e J2. Esses algoritmos levaram às propostas de novos filtros lineares digitais de 19, 30 e 40 pontos para as transformadas co-seno e seno e de novos filtros otimizados de 37 , 27 e 19 pontos para as transformadas J0, J1 e J2, respectivamente. O desempenho dos novos filtros em relação aos filtros existentes na literatura geofísica é avaliado usando-se um modelo geofísico constituído por dois semi-espaços. Como fonte usou-se uma linha infinita de corrente entre os semi-espaços originando, desta forma, transformadas co-seno e seno. Verificou-se melhores desempenhos na maioria das simulações usando o novo filtro co-seno de 19 pontos em relação às simulações usando o filtro co-seno de 19 pontos existente na literatura. Verificou-se também a equivalência de desempenhos nas simulações usando o novo filtro seno de 19 pontos em relação às simulações usando o filtro seno de 20 pontos existente na literatura. Adicionalmente usou-se também como fonte um dipolo magnético vertical entre os semi-espaços originando desta forma, transformadas J0 e J1, verificando-se melhores desempenhos na maioria das simulações usando o novo filtro J1 de 27 pontos em relação ao filtro J1 de 47 pontos existente na literatura. Verificou-se também a equivalência de desempenhos na maioria das simulações usando o novo filtro J0 de 37 pontos em relação ao filtro J0 de 61 pontos existente na literatura. Usou-se também como fonte um dipolo magnético horizontal entre os semi-espaços, verificando-se um desempenho análogo ao que foi descrito anteriormente dos novos filtros de 37 e 27 pontos para as respectivas transformadas J0 e J1 em relação aos filtros de 61 e 47 pontos existentes na literatura, destas respectivas transformadas. Finalmente verificou-se a equivalência de desempenhos entre os novos filtros J0 de 37 pontos e J1 de 27 pontos em relação aos filtros de 61 e 47 pontos existentes na literatura destas transformadas, respectivamente, quando aplicados em modelos de sondagens elétricas verticais (Wenner e Schlumberger). A maioria dos nossos filtros contêm poucos coeficientes quando comparados àqueles geralmente usados na geofísica. Este aspecto é muito importante porque transformadas utilizando filtros lineares digitais são usadas maciçamente em problemas numéricos geofísicos.